2025年练习生高中数学选择性必修第二册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年练习生高中数学选择性必修第二册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年练习生高中数学选择性必修第二册人教版》

1. 曲线$y = \sin x + 2\cos x$在点$(\pi, - 2)$处的切线方程为 (
D
)

A.$x - y - \pi - 2 = 0$
B.$2x - y - 2\pi - 2 = 0$
C.$2x + y - 2\pi + 2 = 0$
D.$x + y - \pi + 2 = 0$
答案: 1.D 【解析】由题意,得$y^{\prime} = \cos x - 2\sin x$.所以$y^{\prime}\mid_{x = \pi} = \cos\pi - 2\sin\pi = - 1$,所以切线方程为$y + 2 = - (x - \pi)$,即$x + y - \pi + 2 = 0$.故选D.
2. 已知函数$f(x) = \begin{cases}ax^{2} + bx + c, & x \geqslant - 1, \\f( - x - 2), & x < - 1\end{cases}$的图像在点$(1,f(1))$处的切线方程为$y = 2x + 1$,则它在点$( - 3,f( - 3))$处的切线方程为 ( )

A.$y = - 2x - 3$
B.$y = - 2x + 3$
C.$y = 2x - 3$
D.$y = 2x + 3$
答案: 2.A 【解析】因为函数$f(x)$的图像在点$(1,f(1))$处的切线方程为$y = 2x + 1$,所以$f(1) = 3$(切点在切线上),且$f^{\prime}(1) = 2$(切点处的导数等于切线斜率).由题意可得$f( - 3) = f(1) = 3$.又$f^{\prime}(x) = \begin{cases} 2ax + b,x \geq - 1, \\ - f^{\prime}( - x - 2),x < - 1, \end{cases}$所以$f^{\prime}( - 3) = - f^{\prime}(1) = - 2$,所以点$( - 3,f( - 3))$为$( - 3,3)$,函数$f(x)$的图像在点$( - 3,f( - 3))$处的切线斜率为$- 2$,所以所求切线方程为$y - 3 = - 2(x + 3)$,即$y = - 2x - 3$.故选A.
方法总结 当已知切点坐标为$(x_{0},y_{0})$时,根据导函数的几何意义可得到切线的斜率,再利用点斜式方程$y - f(x_{0}) = f^{\prime}(x_{0})(x - x_{0})$求出切线方程;当不知道切点坐标时,先设出切点坐标,再结合切点既在函数图像上,又在切线上,列出等式,进行求解.
3. (高考快递·原创) 曲线$y = x(e^{x} + \ln x)$在$x = 1$处的切线方程是
$(2e + 1)x - y - e - 1 = 0$
.
答案: 3.$(2e + 1)x - y - e - 1 = 0$ 【解析】设$f(x) = x(e^{x} + \ln x)$,则$f^{\prime}(x) = (e^{x} + \ln x) + x(e^{x} + \frac{1}{x}) = (x + 1)e^{x} + 1 + \ln x,x > 0$,所以当$x = 1$时,$f(1) = e,f^{\prime}(1) = 2e + 1$,所以所求切线方程为$y - e = (2e + 1)(x - 1)$,即$(2e + 1)x - y - e - 1 = 0$.
4. 定义在$\mathbf{R}$上的函数$f(x)$满足:$f( - x) = f(x)$. 若曲线$y = f(x)$在$x = - 1$处的切线方程为$x - y + 3 = 0$,则该曲线在$x = 1$处的切线方程为
$x + y - 3 = 0$
.
答案: 4.$x + y - 3 = 0$ 【解析】因为曲线$y = f(x)$在$x = - 1$处的切线方程为$x - y + 3 = 0$,所以$f( - 1) = 2$,且$f^{\prime}( - 1) = 1$.因为$f( - x) = f(x)$,所以$f(x)$为偶函数,则$f(1) = f( - 1) = 2$.对$f( - x) = f(x)$两边求导,可得$- f^{\prime}( - x) = f^{\prime}(x)$(求导时注意复合函数的求导法则),所以$f^{\prime}(1) = - f^{\prime}( - 1) = - 1$,所以曲线在$x = 1$处的切线方程为$y - 2 = - 1 × (x - 1)$,即$x + y - 3 = 0$.
5. [2023·北京十一中高二期末] 已知$f(x)$为奇函数,当$x < 0$时,$f(x) = - x^{2}$,则曲线$y = f(x)$在点$(1,1)$处的切线斜率是 (
B
)

A.$- 2$
B.$2$
C.$-e$
D.$e^{- 2} + 1$
答案: 5.B 【解析】当$x > 0$时,因为$f(x)$为奇函数,所以有$f(x) = - f( - x) = x^{2}$,则$f^{\prime}(x) = 2x$,所以曲线$y = f(x)$在点$(1,1)$处的切线斜率是$f^{\prime}(1) = 2$.故选B.
6. [2023·重庆南开中学高二开学考试] 过点$(2, - 6)$作曲线$y = x^{3} - 3x$的切线,所得切线斜率为 (
C
)

A.$- 3$
B.$0$或$3$
C.$- 3$或$24$
D.$0$
答案: 6.C 【解析】因为点$(2, - 6)$不在曲线$y = x^{3} - 3x$上,所以设切点为$(x_{0},y_{0})$.因为$y^{\prime} = 3x^{2} - 3$,所以切线斜率$k = 3x_{0}^{2} - 3$.又切线过点$(2, - 6)$,所以$k = \frac{y_{0} - ( - 6)}{x_{0} - 2} = \frac{y_{0} + 6}{x_{0} - 2}$,所以$\frac{y_{0} + 6}{x_{0} - 2} = 3x_{0}^{2} - 3$,整理得$y_{0} = 3x_{0}^{3} - 6x_{0}^{2} - 3x_{0}$.又$y_{0} = x_{0}^{3} - 3x_{0}$,所以$x_{0}^{3} - 3x_{0} = 3x_{0}^{3} - 6x_{0}^{2} - 3x_{0}$,即$x_{0}^{3} - 3x_{0}^{2} = 0$,解得$x_{0} = 0$或$x_{0} = 3$.当$x_{0} = 0$时,$k = - 3$;当$x_{0} = 3$时,$k = 24$.所以切线斜率为$- 3$或$24$.故选C.
7. [2023·江苏南通海安立发中学高二期末] 函数$f(x) = \frac{\cos x}{e^{x}}$($e$是自然对数的底数) 的图像在点$(0,f(0))$处的切线的倾斜角是 (
C
)

A.$\frac{\pi}{4}$
B.$\frac{\pi}{2}$
C.$\frac{3\pi}{4}$
D.$\frac{2\pi}{3}$
答案: 7.C 【解析】由题意,得$f^{\prime}(x) = \frac{- \sin x · e^{x} - \cos x · e^{x}}{(e^{x})^{2}} = \frac{- \sin x - \cos x}{e^{x}}$,所以$f^{\prime}(0) = \frac{- \sin 0 - \cos 0}{e^{0}} = - 1$.所以函数$f(x)$的图像在点$(0,f(0))$处的切线的倾斜角是$\frac{3\pi}{4}$(倾斜角的正切值为切线斜率).故选C.
8. [2023·天津河西高二期末] 若函数$y = x\ln x$的图像上在点$P$处的切线平行于双曲线$C:x^{2} - \frac{y^{2}}{4} = 1$的渐近线,则点$P$的坐标是
$(e,e)$或$(e^{-3},-3e^{-3})$
.
答案: 8.$(e,e)$或$(e^{- 3}, - 3e^{- 3})$ 【解析】设$P(x_{0},y_{0})$.由$y = x\ln x$,得$y^{\prime} = \ln x + 1$.又双曲线$C:\frac{y^{2}}{4} - x^{2} = 1$的渐近线方程为$y = \pm 2x$,所以$\ln x_{0} + 1 = 2$或$\ln x_{0} + 1 = - 2$,解得$x_{0} = e$或$x_{0} = e^{- 3}$.当$x_{0} = e$时,$y = e\ln e = e$;当$x_{0} = e^{- 3}$时,$y = e^{- 3}\ln e^{- 3} = - 3e^{- 3}$.所以点$P$的坐标为$(e,e)$或$(e^{- 3}, - 3e^{- 3})$.
9. [2023·江苏宿迁高二期末] 若直线$l:x + y + a = 0$是曲线$C:y = x - 2\ln x$的一条切线,则实数$a$的值为 (
C
)

A.$- 3$
B.$3$
C.$- 2$
D.$2$
答案: 9.C 【解析】由题意得$y^{\prime} = 1 - \frac{2}{x}$.设直线$l$与曲线$C$的切点为$P(x_{0},y_{0})$(已知切线斜率求参数,需设切点),则直线$l$的斜率$k = y^{\prime}\mid_{x = x_{0}} = 1 - \frac{2}{x_{0}}$.由于直线$x + y + a = 0$的斜率为$- 1$,所以$1 - \frac{2}{x_{0}} = - 1$,解得$x_{0} = 1$.所以$y_{0} = 1 - 2\ln 1 = 1$,即切点为$(1,1)$,故$1 + 1 + a = 0$,解得$a = - 2$.故选C.
10. [2023·江苏淮安高二期末] 直线$y = kx + 1$与曲线$f(x) = ax^{3} + b$相切于点$P(1,2)$,则$b =$ (
C
)

A.$\frac{1}{3}$
B.$1$
C.$\frac{5}{3}$
D.$2$
答案: 10.C 【解析】因为直线$y = kx + 1$与曲线$f(x) = ax^{3} + b$相切于点$P(1,2)$(知道切点,可求切线斜率),所以将点$P(1,2)$的坐标代入$y = kx + 1$,得$k + 1 = 2$,解得$k = 1$.由$f(x) = ax^{3} + b$,得$f^{\prime}(x) = 3ax^{2}$,所以$f^{\prime}(1) = 3a = 1$,解得$a = \frac{1}{3}$.所以$f(x) = \frac{1}{3}x^{3} + b$.因为点$P(1,2)$在曲线$f(x) = \frac{1}{3}x^{3} + b$上,所以$f(1) = \frac{1}{3} + b = 2$,解得$b = \frac{5}{3}$.故选C.
11. 已知$k < 0$,直线$y = k(x - 2)$与曲线$y = x - 2\ln x$相切,则$k =$ (
B
)

A.$- \frac{1}{2}$
B.$- 1$
C.$- 2$
D.$-e$
答案: 11.B 【解析】由$y = x - 2\ln x$,得$x > 0,y^{\prime} = 1 - \frac{2}{x}$.因为直线$y = k(x - 2)$与曲线$y = x - 2\ln x$相切,所以设切点为$(x_{0},x_{0} - 2\ln x_{0})$,则$k = 1 - \frac{2}{x_{0}}$.因为直线$y = k(x - 2)$过点$(2,0)$,所以$2x_{0} - 2 - x_{0}\ln x_{0} = 0$.令$f(x) = 2x - 2 - x\ln x(0 < x < 2)$,则$f^{\prime}(x) = 1 - \ln x > 0$在$(0,2)$上恒成立,所以$f(x)$在$(0,2)$上单调递增.又$f(1) = 0$,所以切点为$(1,1)$,则$k = 1 - \frac{2}{1} = - 1$.故选B.
12. [2023·广东清远南阳中学高二月考] 设函数$f(x) = ae^{x}\ln x + \frac{be^{x - 1}}{x}$,曲线$y = f(x)$在点$(1,f(1))$处的切线方程为$y = e(x - 1) + 2$,则$a =$
1
,$b =$
2
.
答案: 12.$\frac{1}{2}$ 【解析】由题意,得$f^{\prime}(x) = ae^{x}(\frac{1}{x} + \ln x) + be^{x - 1}(\frac{1}{x}-\frac{1}{x^{2}})$.因为曲线$y = f(x)$在点$(1,f(1))$处的切线方程为$y = e(x - 1) + 2$,所以$f^{\prime}(1) = ae = e,f(1) = b = 2$,所以$a = 1,b = 2$.
13. [2023·河南大联考高二阶段性测试] 已知直线$y = ax + b$与曲线$y = \ln x - x$相切,则$a + b$的最小值是
-1
.
答案: 13.$- 1$ 【解析】设切点为$A(x_{0},y_{0})$.由$y = \ln x - x$得$x > 0,y^{\prime} = \frac{1}{x} - 1$,所以$\frac{1}{x_{0}} - 1 = a$,则$x_{0} = \frac{1}{a + 1}$.因为$x_{0} > 0$,所以$a > - 1$.又$y_{0} = ax_{0} + b,y_{0} = \ln x_{0} - x_{0}$,所以$ax_{0} + b = \ln x_{0} - x_{0}$,所以$a · \frac{1}{a + 1} + b = \ln\frac{1}{a + 1} - \frac{1}{a + 1}$,解得$b = - \ln(a + 1) - 1$.故$a + b = a - \ln(a + 1) - 1$.令$g(x) = x - \ln(x + 1) - 1,x > - 1$,则$g^{\prime}(x) = 1 - \frac{1}{x + 1} = \frac{x}{x + 1}$.当$x \in ( - 1,0)$时,$g^{\prime}(x) < 0$,此时函数$g(x)$单调递减;当$x \in (0, + \infty)$时,$g^{\prime}(x) > 0$,此时函数$g(x)$单调递增.所以函数$g(x)$在$x = 0$处取得极小值,也是最小值,所以$g(x)_{\min} = - 1$,故$a + b$的最小值为$- 1$.
14. 若过点$(a,b)$可以作曲线$y = x - \frac{1}{x}$($x > 0$) 的两条切线,则 (
B
)

A.$b > a > 0$
B.$a > b > a - \frac{1}{a}$
C.$0 < a - \frac{1}{a} < b < a$
D.$a - \frac{1}{a} < b < 0 < a$
答案: 14.B 【解析】设切点为$(x_{0},y_{0})$,则$x_{0} > 0$.由题意,得$y^{\prime} = 1 + \frac{1}{x_{0}} - b\frac{1}{x_{0}^{2}}$,则切线的斜率$k = 1 + \frac{1}{x_{0}^{2}} = \frac{y_{0} - b}{x_{0} - a} = \frac{x_{0} - b}{x_{0} - a}$,化简得$(a - b)x_{0}^{2} - 2x_{0} + a = 0$ ①,则$\Delta = 4 - 4a(a - b)$.因为过点$(a,b)$可以作曲线的两条切线,所以方程①有两个不等正解,即$\begin{cases} - \frac{- 2}{(a - b)} > 0, \\\Delta = 4 - 4a(a - b) > 0, \frac{a}{a - b} > 0, \end{cases}$解得$a > b > a - \frac{1}{a}$.故选B.
15. 已知函数$f(x) = 4\sqrt{x} + a\ln x$,存在两条过原点的直线与曲线$y = f(x)$相切,则实数$a$的取值范围是 (
D
)

A.$( - e^{2},0)$
B.$( - \infty, - e^{3})$
C.$( - \sqrt{e},0)$
D.$( - \infty, - e^{\frac{3}{2}})$
答案: 15.D 【解析】设切点坐标为$(x_{0},y_{0})$.由题意,得$f^{\prime}(x) = \frac{2}{\sqrt{x}} + \frac{a}{x},x > 0$,则切线斜率为$f^{\prime}(x_{0}) = \frac{2}{\sqrt{x_{0}}} + \frac{a}{x_{0}}$.又$y_{0} = 4\sqrt{x_{0}} + a\ln x_{0}$,则切线方程为$y - (4\sqrt{x_{0}} + a\ln x_{0}) = (\frac{2}{\sqrt{x_{0}}} + \frac{a}{x_{0}})(x - x_{0})$.因为切线过原点,所以$- (4\sqrt{x_{0}} + a\ln x_{0}) = (\frac{2}{\sqrt{x_{0}}} + \frac{a}{x_{0}}) · ( - x_{0})$,即方程$2\sqrt{x_{0}} + a\ln x_{0} - a = 0$在$x_{0} \in (0, + \infty)$上有两个不相等的实根[将存在两条过原点的直线与曲线$y = f(x)$相切转化为关于切点的横坐标$x_{0}$的方程有两个解].设$h(x) = 2\sqrt{x} + a\ln x - a,x \in (0, + \infty)$,则$h^{\prime}(x) = \frac{1}{\sqrt{x}} + \frac{a}{x} = \frac{\sqrt{x} + a}{x}$.当$a \geq 0$时,$h^{\prime}(x) > 0$恒成立,所以$h(x)$在$(0, + \infty)$上单调递增,不可能存在两个零点,故不符合题意.当$a < 0$时,令$h^{\prime}(x) = 0$,得$x = a^{2}$.当$x \in (0,a^{2})$时,$h^{\prime}(x) < 0$,此时函数$h(x)$单调递减;当$x \in (a^{2}, + \infty)$时,$h^{\prime}(x) > 0$,此时函数$h(x)$单调递增.所以要使方程$h(x) = 0$有两个不同的零点,则$h(x)_{\min} = h(a^{2}) = 2\sqrt{a^{2}} + a\ln a^{2} - a = - a\lbrack 3 - 2\ln( - a)\rbrack < 0$,解得$a < - e^{\frac{3}{2}}$.又$h(e) = 2\sqrt{e} > 0$,当$x \rightarrow + \infty$时,$h(x) \rightarrow + \infty$,故当$a < - e^{\frac{3}{2}}$时,$h(x) = 0$有两个零点,则实数$a$的取值范围是$( - \infty, - e^{\frac{3}{2}})$.故选D.

查看更多完整答案,请扫码查看

关闭