2025年练习生高中数学选择性必修第二册人教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年练习生高中数学选择性必修第二册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
11.在数列$\{ a_{n}\}$中,$a_{1}=2,n(a_{n + 1}-a_{n})=a_{n}(n \in \mathbf{N}^{*})$,则$a_{n}=$
2n
;设数列$\{\frac{1}{a_{n}a_{n + 1}}\}$的前$n$项和为$S_{n}$,若不等式$S_{n}<m$对于任意$n \in \mathbf{N}^{*}$成立,则实数$m$的取值范围是[$\frac{1}{4}$,+∞)
.
答案:
11.2n [$\frac{1}{4}$,+∞) [解析]由n(aₙ₊₁ - aₙ) = aₙ(n∈N*),得$\frac{aₙ₊₁}{n + 1}$ = $\frac{aₙ}{n}$,
∴$\frac{aₙ}{n}$ =... = $\frac{a₁}{1}$ = 2,
∴aₙ = 2n.
∴$\frac{1}{aₙaₙ₊₁}$ = $\frac{1}{2n·2(n + 1)}$ = $\frac{1}{4}$($\frac{1}{n}$ - $\frac{1}{n + 1}$),
∴Sₙ = $\frac{1}{4}$×(1 - $\frac{1}{2}$ + $\frac{1}{2}$ - $\frac{1}{3}$ + … + $\frac{1}{n}$ - $\frac{1}{n + 1}$) = $\frac{1}{4}$(1 - $\frac{1}{n + 1}$)<$\frac{1}{4}$. 若不等式Sₙ<m对于任意n∈N*成立,则$\frac{1}{4}$(1 - $\frac{1}{n + 1}$)<m,
∴m≥$\frac{1}{4}$.
∴$\frac{aₙ}{n}$ =... = $\frac{a₁}{1}$ = 2,
∴aₙ = 2n.
∴$\frac{1}{aₙaₙ₊₁}$ = $\frac{1}{2n·2(n + 1)}$ = $\frac{1}{4}$($\frac{1}{n}$ - $\frac{1}{n + 1}$),
∴Sₙ = $\frac{1}{4}$×(1 - $\frac{1}{2}$ + $\frac{1}{2}$ - $\frac{1}{3}$ + … + $\frac{1}{n}$ - $\frac{1}{n + 1}$) = $\frac{1}{4}$(1 - $\frac{1}{n + 1}$)<$\frac{1}{4}$. 若不等式Sₙ<m对于任意n∈N*成立,则$\frac{1}{4}$(1 - $\frac{1}{n + 1}$)<m,
∴m≥$\frac{1}{4}$.
12.已知数列$\{ a_{n}\}$的前$n$项和$S_{n}$满足$S_{n}=n^{2}+\lambda n$,且数列$\{ S_{n}\}$最小项为$S_{8}$.
(1)求$\lambda$的取值范围;
(2)若$\lambda \in \mathbf{Z}$,设$b_{n}=\frac{1}{a_{n}a_{n + 1}}$,$T_{n}$是数列$\{ b_{n}\}$的前$n$项和,求$\{ b_{n}\}$的前$15$项和$T_{15}$.
(1)求$\lambda$的取值范围;
(2)若$\lambda \in \mathbf{Z}$,设$b_{n}=\frac{1}{a_{n}a_{n + 1}}$,$T_{n}$是数列$\{ b_{n}\}$的前$n$项和,求$\{ b_{n}\}$的前$15$项和$T_{15}$.
答案:
12.[解]
(1)由题意,得Sₙ = ($\lambda$ + $\frac{n}{2}$)² - $\frac{\lambda²}{4}$,则当n = - $\frac{\lambda}{2}$时,Sₙ最小.
又数列{Sₙ}最小项为S₈,
所以$\frac{7 + 8}{2}$< - $\frac{\lambda}{2}$<$\frac{8 + 9}{2}$,解得 - 17<$\lambda$< - 15,
所以$\lambda$的取值范围为( - 17, - 15).
(2)由
(1)及$\lambda$∈Z,得$\lambda$ = - 16,则Sₙ = n² - 16n.
当n≥2时,aₙ = Sₙ - Sₙ₋₁ = 2n - 17,
当n = 1时,a₁ = S₁ = - 15,满足上式,
所以aₙ = 2n - 17,
则bₙ = $\frac{1}{(2n - 17)(2n - 15)}$ = $\frac{1}{2}$($\frac{1}{2n - 17}$ - $\frac{1}{2n - 15}$)
所以Tₙ = $\frac{1}{2}$($\frac{1}{ - 15}$ - $\frac{1}{ - 13}$ + $\frac{1}{ - 13}$ - $\frac{1}{ - 11}$ + … + $\frac{1}{2n - 17}$ - $\frac{1}{2n - 15}$) = $\frac{1}{2}$($\frac{1}{ - 15}$ - $\frac{1}{2n - 15}$) = - $\frac{n}{15(2n - 15)}$
所以T₁₅ = - $\frac{1}{15}$.
(1)由题意,得Sₙ = ($\lambda$ + $\frac{n}{2}$)² - $\frac{\lambda²}{4}$,则当n = - $\frac{\lambda}{2}$时,Sₙ最小.
又数列{Sₙ}最小项为S₈,
所以$\frac{7 + 8}{2}$< - $\frac{\lambda}{2}$<$\frac{8 + 9}{2}$,解得 - 17<$\lambda$< - 15,
所以$\lambda$的取值范围为( - 17, - 15).
(2)由
(1)及$\lambda$∈Z,得$\lambda$ = - 16,则Sₙ = n² - 16n.
当n≥2时,aₙ = Sₙ - Sₙ₋₁ = 2n - 17,
当n = 1时,a₁ = S₁ = - 15,满足上式,
所以aₙ = 2n - 17,
则bₙ = $\frac{1}{(2n - 17)(2n - 15)}$ = $\frac{1}{2}$($\frac{1}{2n - 17}$ - $\frac{1}{2n - 15}$)
所以Tₙ = $\frac{1}{2}$($\frac{1}{ - 15}$ - $\frac{1}{ - 13}$ + $\frac{1}{ - 13}$ - $\frac{1}{ - 11}$ + … + $\frac{1}{2n - 17}$ - $\frac{1}{2n - 15}$) = $\frac{1}{2}$($\frac{1}{ - 15}$ - $\frac{1}{2n - 15}$) = - $\frac{n}{15(2n - 15)}$
所以T₁₅ = - $\frac{1}{15}$.
13.数列$\{ a_{n}\}$满足$a_{1}=0,a_{2}=1,a_{n}=\begin{cases}2 + a_{n - 2},n \geqslant 3,n为奇数, \\2a_{n - 2},n \geqslant 3,n为偶数,\end{cases}$则数列$\{ a_{n}\}$的前$10$项和为 ( )
A.$48$
B.$49$
C.$50$
D.$51$
A.$48$
B.$49$
C.$50$
D.$51$
答案:
13.D [解析]因为当n≥3且n为奇数时,aₙ = 2 + aₙ₋₂,所以所有奇数项构成以a₁为首项,2为公差的等差数列. 又因为当n≥3且n为偶数时,aₙ = 2aₙ₋₂,所以所有偶数项构成以a₂为首项,2为公比的等比数列. 所以a₁ + a₂ + a₃ + … + a₁₀ = (0 + 8)×5×$\frac{1}{2}$ + $\frac{1 - 2⁵}{1 - 2}$ = 51. 故选D.
14.[2023·广东佛山南海中学高二测试]数列$1,1 + 2,1 + 2 + 2^{2},·s,1 + 2 + 2^{2} + 2^{3} + ·s + 2^{n - 1},·s$的前$n$项和为 (
A.$2^{n}-n - 1$
B.$2^{n + 1}-n - 2$
C.$2^{n}$
D.$2^{n + 1}-n$
B
)A.$2^{n}-n - 1$
B.$2^{n + 1}-n - 2$
C.$2^{n}$
D.$2^{n + 1}-n$
答案:
14.B 思维路径:设此数列的第n项为aₙ→求出此数列的通项公式aₙ = 2ⁿ - 1→分组求和求出其前n项和.
[解析]设此数列的第n项为aₙ,则aₙ = 1 + 2 + 2² + 2³ + … + 2ⁿ⁻² + 2ⁿ⁻¹ = $\frac{1 - 2ⁿ}{1 - 2}$ = 2ⁿ - 1,所以此数列的前n项和为a₁ + a₂ + … + aₙ = 2¹ - 1 + 2² - 1 + … + 2ⁿ - 1 = $\frac{2(1 - 2ⁿ)}{1 - 2}$ - n = 2ⁿ⁺¹ - n - 2. 故选B.
方法总结
把数列的每一项分成两项或几项,使其转化为几个容易求和的数列,再求解.
[解析]设此数列的第n项为aₙ,则aₙ = 1 + 2 + 2² + 2³ + … + 2ⁿ⁻² + 2ⁿ⁻¹ = $\frac{1 - 2ⁿ}{1 - 2}$ = 2ⁿ - 1,所以此数列的前n项和为a₁ + a₂ + … + aₙ = 2¹ - 1 + 2² - 1 + … + 2ⁿ - 1 = $\frac{2(1 - 2ⁿ)}{1 - 2}$ - n = 2ⁿ⁺¹ - n - 2. 故选B.
方法总结
把数列的每一项分成两项或几项,使其转化为几个容易求和的数列,再求解.
15.数列$\{ a_{n}\}$的前$n$项和为$S_{n}$,且$a_{n}=(-1)^{n + 1} · (2n + 1)$,则$S_{2021}=$ (
A.$2020$
B.$2021$
C.$2022$
D.$2023$
D
)A.$2020$
B.$2021$
C.$2022$
D.$2023$
答案:
15.D
16.数列$\{ a_{n}\}$满足$a_{n + 1}=a_{n}\cos n\pi + 3n$,则数列$\{ a_{n}\}$的前$12$项和为 (
A.$64$
B.$150$
C.$108$
D.$240$
C
)A.$64$
B.$150$
C.$108$
D.$240$
答案:
16.C [解析]由题意,得a₂ = - a₁ + 3,a₃ = a₂ + 6 = - a₁ + 9,a₄ = - a₃ + 9 = a₁,
∴a₁ + a₂ + a₃ + a₄ = 12. 又cosnπ的周期为2,同理可得a₅ + a₆ + a₇ + a₈ = 36,a₉ + a₁₀ + a₁₁ + a₁₂ = 60,
∴S₁₂ = 12 + 36 + 60 = 108. 故选C.
∴a₁ + a₂ + a₃ + a₄ = 12. 又cosnπ的周期为2,同理可得a₅ + a₆ + a₇ + a₈ = 36,a₉ + a₁₀ + a₁₁ + a₁₂ = 60,
∴S₁₂ = 12 + 36 + 60 = 108. 故选C.
17.[2022·四川成都第七中学高一期末]已知数列$\{ a_{n}\}$的通项公式为$a_{n}=n\cos\frac{2n\pi}{3}$,$S_{n}$为数列$\{ a_{n}\}$的前$n$项和,则$S_{2022}$的值为 (
A.$672$
B.$1011$
C.$2022$
D.$6066$
B
)A.$672$
B.$1011$
C.$2022$
D.$6066$
答案:
17.B [解析]由aₙ = ncos$\frac{2n\pi}{3}$,可得a₁ = cos$\frac{2\pi}{3}$ = 1×( - $\frac{1}{2}$),a₂ = 2cos$\frac{4\pi}{3}$ = 2×( - $\frac{1}{2}$),a₃ = 3cos2π = 3×1,a₄ = 4cos$\frac{8\pi}{3}$ = 4×( - $\frac{1}{2}$),a₅ = 5cos$\frac{10\pi}{3}$ = 5×( - $\frac{1}{2}$),a₆ = 6cos4π = 6×1,a₇ = 7cos$\frac{14\pi}{3}$ = 7×( - $\frac{1}{2}$),a₈ = 8cos$\frac{16\pi}{3}$ = 8×( - $\frac{1}{2}$),a₉ = 9cos6π = 9×1,….因为2022 = 674×3,所以S₂₀₂₂ = [1 + 4 + … + (1 + 673×3)]×( - $\frac{1}{2}$)+[3 + 6 + 9 + … + 3×674]×1 = - $\frac{1}{2}$×$\frac{674×(2 + 2022)}{2}$ + $\frac{3×674×2022}{2}$ = - $\frac{1}{2}$×$\frac{674×2024}{2}$ + $\frac{3×674×2022}{2}$ = - $\frac{674}{2}$×(2024 - 6066)+$\frac{674×2022}{2}$ = - $\frac{674}{2}$×( - 4042)=1011. 故选B.
18.已知数列$\{ a_{n}\}$满足$a_{n} · (-1)^{n}+a_{n + 2}=2n - 1,S_{20}=650$,则$a_{23}=$ (
A.$231$
B.$234$
C.$279$
D.$276$
B
)A.$231$
B.$234$
C.$279$
D.$276$
答案:
18.B [解析]由aₙ·(-1)ⁿ + aₙ₊₂ = 2n - 1,S₂₀ = 650可知,当n为偶数时,aₙ + aₙ₊₂ = 2n - 1,当n为奇数时,aₙ₊₂ = aₙ + 2n - 1,所以S₂₀ = (a₁ + a₃ + … + a₁₉) + (a₂ + a₄) + (a₆ + a₈) + (a₁₀ + a₁₂) + (a₁₄ + a₁₆) + (a₁₈ + a₂₀) = 650,即a₁ + (a₁ + 1) + (a₁ + 6) + (a₁ + 15) + (a₁ + 28) + (a₁ + 45) + (a₁ + 66) + (a₁ + 91) + (a₁ + 120) + (a₁ + 153) + 3 + 11 + 19 + 27 + 35 = 650,解得a₁ = 3,所以a₂₃ = a₁ + 231 = 234. 故选B.
19.[2022·北京第四十三中高二期中]定义“等和数列”:某一项与其后一项和为常数的数列,规定该常数为公和.问:对于等和数列$\{ a_{n}\}$,$a_{1}=2$,公和为$5$,则$a_{18}=$,前$n$项和$S_{n}=$.
答案:
19.3 $\begin{cases} \frac{5n}{2}, & n 为偶数, \\ \frac{5n - 1}{2}, & n 为奇数 \end{cases}$ [解析]由题意知,aₙ + aₙ₊₁ = 5,又a₁ = 2,所以a₂ = 3,a₃ = 2,a₄ = 3,a₅ = 2,….当n为奇数时,aₙ = 2,当n为偶数时,aₙ = 3,所以a₁₈ = 3.当n为奇数且n≥3时,Sₙ = a₁ + a₂ + … + aₙ = (a₁ + a₃ + … + aₙ₋₁) + (a₂ + a₄ + … + aₙ₋₁) = 2×$\frac{n + 1}{2}$ + 3×$\frac{n - 1}{2}$ = $\frac{5n - 1}{2}$,当n = 1时,上式也符合;当n为偶数时,Sₙ = a₁ + a₂ + … + aₙ = (a₁ + a₃ + … + aₙ₋₁) + (a₂ + a₄ + … + aₙ) = 2×$\frac{n}{2}$ + 3×$\frac{n}{2}$ = $\frac{5n}{2}$.
查看更多完整答案,请扫码查看