2025年练习生高中数学选择性必修第二册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年练习生高中数学选择性必修第二册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年练习生高中数学选择性必修第二册人教版》

10.[2023·河北衡水第二中学高二期中]设$\{ a_n \}$是等差数列,$S_n$是其前$n$项和,且$S_5 < S_6$,$S_6 = S_7 > S_8$,则下列结论正确的是(
ABD
)

A.$d < 0$
B.$S_6$与$S_7$是$S_n$的最大值
C.$S_9 > S_5$
D.$a_7 = 0$
答案: 10.ABD 【解析】由$S_{6}=S_{7}$,得$S_{7}-S_{6}=0$,即$a_{7}=0$,D正确.由$S_{5} < S_{6}$,得$S_{6}-S_{5} > 0$,即$a_{6} > 0$.因为$a_{7}=a_{6}+d$,所以$d < 0$,A正确.由$\{ a_{n}\}$是等差数列,可设$a_{n}=a_{1}+(n - 1)d=dn+a_{1}-d$.由$d < 0$知$\{ a_{n}\}$是递减数列.由$S_{7} > S_{8}$,得$S_{8}-S_{7}=a_{8} < 0$.又$a_{6} > 0,a_{7}=0$,所以当$n \leqslant 6,n \in \mathbf{N}^{*}$时,$a_{n} > 0$,当$n \geqslant 8$,$n \in \mathbf{N}^{*}$时,$a_{n} < 0$,故$S_{6}$和$S_{7}$是$S_{n}$的最大值,B正确.因为$S_{9}-S_{5}=a_{6}+a_{7}+a_{8}+a_{9}=2(a_{7}+a_{8})=2a_{8} < 0$,所以$S_{9} < S_{5}$,C错误.故选ABD.
11.已知数列$\left\{ \frac{a_n - a_{n + 1}}{a_{n + 1} a_n} \right\}$是公差为1的等差数列,且$a_1 = 1$,$a_2 = \frac{1}{2}$,则下列说法正确的有(
ACD
)

A.$a_4 = \frac{1}{7}$
B.存在等差数列$\{ b_n \}$,使得其前$n$项和$S_n = \frac{1}{a_n}$
C.存在等差数列$\{ c_n \}$,使得其前$n$项和$T_n = \frac{1}{a_n} - 1$
D.对任意$n \in \mathbf{N}^*$,$0 < a_n \leqslant 1$
答案: 11.ACD 【解析】$\because \frac {a_{1}-a_{2}}{a_{2}a_{1}}=\frac {1 - \frac {1}{2}}{\frac {1}{2} × 1}=1$,$\therefore \frac {a_{n}-a_{n + 1}}{a_{n + 1}a_{n}}$是以$1$为首项,$1$为公差的等差数列,$\therefore \frac {a_{n}-a_{n + 1}}{a_{n + 1}a_{n}}=\frac {1}{a_{n}} - \frac {1}{a_{n + 1}}=n$,即$\frac {1}{a_{n + 1}} - \frac {1}{a_{n}} = - n$.
当$n \geqslant 2$时,$\frac {1}{a_{n}} - \frac {1}{a_{1}} = (\frac {1}{a_{2}} - \frac {1}{a_{1}})+(\frac {1}{a_{3}} - \frac {1}{a_{2}})+·s+(\frac {1}{a_{n}} - \frac {1}{a_{n - 1}})= - 1 + ( - 2)+·s+[-(n - 1)] = - \frac {n(n - 1)}{2}$,当$n = 1$时,显然符合上式,$\therefore \frac {1}{a_{n}} = \frac {n^{2}-n + 2}{2}$,$\therefore a_{4}=\frac {2}{16 - 4 + 2}=\frac {1}{7}$,故A正确.等差数列的前$n$项和$S_{n}=An^{2}+Bn \neq \frac {n^{2}-n}{2} - 1 = \frac {n^{2}-n - 2}{2}$,故B错误.等差数列$\{ n - 1\}$的前$n$项和为$\frac {1}{a_{n}} - 1 = \frac {n^{2}-n + 2}{2} - 1 = \frac {n^{2}-n}{2} \geqslant 2$,$\therefore 0 < \frac {2}{n^{2}-n + 2} \leqslant 1$,故D正确.选ACD.
12.已知数列$\{ a_n \}$满足$a_1 = 1$,$\frac{a_{n + 1}}{a_n} = \frac{a_n}{2} + \frac{2}{a_n}$,则(
ABD
)

A.$a_{n + 1} \geqslant 2a_n$
B.$\{ a_n \}$是递增数列
C.$\{ a_{n + 1} - 4a_n \}$是递增数列
D.$a_n \geqslant n^2 - 3n + 3$
答案: 12.ABD 【解析】对于A,由$\frac {a_{n + 1}}{a_{n}}=\frac {a_{n}}{2}+\frac {2}{a_{n}}$,得$a_{n + 1}=\frac {a_{n}^{2}}{2}+2 \geqslant 2\sqrt {\frac {a_{n}^{2}}{2} × 2}=2a_{n}$,所以$a_{n} > 0$,所以$\frac {a_{n + 1}}{a_{n}}=\frac {a_{n}}{2}+\frac {2}{a_{n}} \geqslant 2\sqrt {\frac {a_{n}}{2} × \frac {2}{a_{n}}}=2$,所以$a_{n + 1} \geqslant 2a_{n}$,当且仅当$\frac {a_{n}}{2}=\frac {2}{a_{n}}$,即$a_{n}=2$时取等号,故A正确.对于B,由A的分析可得$\{ a_{n}\}$为正项数列,且$a_{n + 1} \geqslant 2a_{n}$,则$a_{n + 1} > a_{n}$,所以$\{ a_{n}\}$为递增数列,故B正确.对于C,由题意得$a_{1}=1,\frac {a_{2}}{a_{1}}=\frac {a_{1}}{2}+\frac {2}{a_{1}}$,解得$a_{2}=\frac {5}{2}$,所以$a_{2}-4a_{1}=-\frac {3}{2}$.又$a_{n + 1}-4a_{n}=\frac {a_{n}^{2}}{2}-4a_{n}+2$,所以$a_{3}-4a_{2}=\frac {a_{2}^{2}}{2}-4a_{2}+2=-\frac {39}{8} < -\frac {3}{2}$,则$\{ a_{n + 1}-4a_{n}\}$不是递增数列,故C错误.对于D,由C的分析可得$a_{1}=1,a_{2}=\frac {5}{2}$,满足$a_{n} \geqslant n^{2}-3n + 3$.当$n \geqslant 2$时,因为$\{ a_{n}\}$是递增数列,所以$a_{n} > a_{2} > 2$,即$\frac {a_{n}}{2} > 1$,由$a_{n + 1}=\frac {a_{n}^{2}}{2}$可得$\frac {a_{n + 1}}{a_{n + 1 - 1}}=\frac {a_{n}^{2}}{2a_{n - 1}} > 1$,即$a_{n} > 2n - 2$.假设当$n = k$时,不等式成立,即$a_{k} \geqslant k^{2}-3k + 3$,所以$a_{k + 1} \geqslant 2a_{k}=a_{k}+a_{k} \geqslant k^{2}-3k + 3 + 2 - 2=(k + 1)^{2}-3(k + 1)+3$,所以当$n = k + 1$时,命题也成立,故D正确.选ABD.
13.[2023·重庆广益中学高二月考]若数列$\{ a_n \}$满足$a_1 = 5$,且$a_n - a_{n - 1} = -2 ( n \geqslant 2 )$,则$a_n =$
-2n+7
.
答案: 13.$-2n + 7$ 【解析】因为数列$\{ a_{n}\}$满足$a_{1}=5$,且$a_{n}-a_{n - 1}=-2(n \geqslant 2)$,所以数列$\{ a_{n}\}$是首项为$5$,公差为$-2$的等差数列,所以$a_{n}=5 - 2(n - 1)= - 2n + 7$.
14.已知在正项等比数列$\{ a_n \}$中,$3a_1$,$\frac{1}{2} a_3$,$2a_2$成等差数列,则$\frac{a_{2\ 022} + a_{2\ 021}}{a_{2\ 020} + a_{2\ 019}} =$
9
.
答案: 14.9 【解析】设正项等比数列$\{ a_{n}\}$的公比为$q$,则$q > 0$.因为$3a_{1},\frac {1}{2}a_{3},2a_{2}$成等差数列,所以$2 × \frac {1}{2}a_{3}=3a_{1}+2a_{2}$,即$a_{3}q^{2}=3a_{1}+2a_{1}q$.又$a_{1} > 0$,所以$q^{2}-2q - 3 = 0$,解得$q = 3$或$q = - 1$(不符合题意,舍去).所以$\frac {a_{2022}+a_{2021}}{a_{2020}+a_{2019}}=\frac {a_{1}q^{2021}+a_{1}q^{2020}}{a_{1}q^{2019}+a_{1}q^{2018}}=\frac {q^{3}+q^{2}}{q + 1}=q^{2}=9$.
15.数学中有许多美丽的错误,法国数学家费马通过$F_n = 2^{2^n} + 1 ( n = 0$,$1$,$2$,⋯$)$的数都是质数,这就是费马素数猜想.半个世纪后善于发现的欧拉算出第5个费马数不是质数,从而否定了这一种猜想.现设:$a_n = m · \log_2 ( F_n - 1 ) ( n = 1 , 2 , 3 , ·s )$,$m$为常数,$S_n$表示数列$\{ a_n \}$的前$n$项和,若$S_6 = 126$,则$a_5 =$
32
.
答案: 15.32 【解析】$\because F_{n}=2^{2^{n}}+1,\therefore a_{n}=m\log_{2}(F_{n}-1)=m · 2^{n}$,显然$m \neq 0$,则$\frac {a_{n + 1}}{a_{n}}=\frac {m · 2^{n + 1}}{m · 2^{n}}=2$.又$\because a_{1}=2m,\therefore$数列$\{ a_{n}\}$是首项为$2m$,公比为$2$的等比数列.$\therefore S_{n}=\frac {2m(1 - 2^{n})}{1 - 2}=126m = 126$,解得$m = 1,\therefore a_{5}=2^{5}=32$.
16.已知数列$\{ a_n \}$的前$n$项和为$S_n$,$a_4 = 7$且$4S_n = n ( a_n + a_{n + 1 } )$,则$S_n - 8a_n$的最小值为
-56
.
答案: 16.$-56$ 【解析】由题意,得$4S_{3}=3(a_{3}+7)$,$4S_{2}=2(a_{2}+a_{3})$,$4S_{1}=a_{1}+a_{2},\therefore a_{2}=3a_{1},a_{3}=5a_{1}$,从而$4 × 9a_{1}=3(5a_{1}+7)$,解得$a_{1}=1,\therefore a_{2}=3,a_{3}=5,\therefore 4S_{4}=4(a_{4}+a_{5})$,$\therefore a_{5}=9$.同理得$a_{6}=11,a_{7}=13,a_{8}=15,·s,a_{n}=2n - 1,\therefore S_{n}=n^{2}$.经检验,$4S_{n}=n(a_{n}+a_{n + 1})$成立,$\therefore a_{n}=2n - 1,S_{n}=n^{2},\therefore S_{n}-8a_{n}=n^{2}-16n + 8=(n - 8)^{2}-56$,$\therefore$当$n = 8$时,$S_{n}-8a_{n}$取得最小值$-56$.
17.(本小题满分10分)[2022·重庆第一中学高二月考]已知$\{ a_n \}$是等差数列,$\{ b_n \}$是公比大于0的等比数列,且$b_1 = 3$,$b_3 = 27$,$b_1 = a_1 + a_2$,$b_2 = a_4 + a_5$.
(1)求数列$\{ a_n \}$,$\{ b_n \}$的通项公式;
(2)若$c_k$表示数列$\{ a_n \}$在区间$( 0 , b_k )$的项数,求$S = c_1 + c_2 + ·s + c_{100}$.
答案: 17.【解】
(1)设等差数列$\{ a_{n}\}$的公差为$d$,等比数列$\{ b_{n}\}$的公比为$q(q > 0)$,则$b_{3}=b_{1}q^{2}$,所以$3q^{2}=27$,则$q^{2}=9$,解得$q = 3$(负值已舍去).所以$b_{n}=3^{n}$.
因为$b_{1}=a_{1}+a_{2},b_{2}=a_{4}+a_{5}$,所以$\begin{cases} a_{1}+a_{1}+d=3, \\ a_{1}+3d+a_{1}+4d=9, \end{cases}$解得$\begin{cases} a_{1}=1, \\ d=1. \end{cases}$所以$a_{n}=1+(n - 1) × 1=n$.
(2)依题意,得$c_{k}=3^{k}-1$,所以$S=c_{1}+c_{2}+·s+c_{100}=(3^{1}+3^{2}+·s+3^{100})-100=\frac {3 × (1 - 3^{100})}{1 - 3}-100=\frac {3^{101}-203}{2}$.

查看更多完整答案,请扫码查看

关闭