2025年练习生高中数学选择性必修第二册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年练习生高中数学选择性必修第二册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年练习生高中数学选择性必修第二册人教版》

13.[2023·福建宁德一中高二月考]在等比数列$\{ a_n \}$中,若$a_{2018} = 4,a_{2022} = 9$,则$a_{2020} =$ (
A
)

A.6
B.-6
C.$\pm 6$
D.$\frac{13}{2}$
答案: A 【解析】设等比数列$\{ a_n \}$的公比为$q$.$\because a_{2022} = a_{2018}q^4$,即$9 = 4q^4$,$\therefore q^2 = \frac{3}{2}$,$\therefore a_{2020} = a_{2018}q^2$(在公比为$q$的等比数列$\{ a_n \}$中,$a_n = a_mq^{n - m}$)$= 4×\frac{3}{2} = 6$.故选A.
14.[2023·陕西渭南白水中学高二月考]在数列$\{ a_n \}$中,$a_{n + 1} = -2a_n$,且$a_2 = 1$,则$a_n =$ (
B
)

A.$2^{n - 2}$
B.$(-2)^{n - 2}$
C.$2^{n - 1}$
D.$(-2)^{n - 1}$
答案: B 【解析】$\because a_2 = 1$,$a_{n + 1} = -2a_n$,$\therefore \frac{a_{n + 1}}{a_n} = -2$,$\therefore \{ a_n \}$是公比为$-2$的等比数列,$\therefore a_n = a_2q^{n - 2} = (-2)^{n - 2}$.故选B.
15.[2023·江西高二期中]若等比数列$\{ a_n \}$满足$a_3a_8 = 4a_7$,则$a_2a_6 =$ (
C
)

A.4
B.8
C.16
D.20
答案: C 【解析】在等比数列$\{ a_n \}$中,$a_3a_8 = a_4a_7$(若$m + n = p + q$,$m$,$n$,$p$,$q \in \mathbf{N}^*$,则$a_ma_n = a_pa_q$),所以$a_4a_7 = 4a_7$,则$a_4 = 4$,所以$a_2a_6 = a_4^2 = 16$(等比中项).故选C.
方法总结:在公比为$q$的等比数列$\{ a_n \}$中,
(1)$a_n = a_mq^{n - m}$;
(2)若$m + n = p + q = 2k$($m$,$n$,$p$,$q$,$k \in \mathbf{N}^*$),则$a_ma_n = a_pa_q = a_k^2$.
16.已知等比数列$\{ a_n \}$中的各项均为正数,$a_5a_6 = e^2$,则$\ln a_1 + \ln a_2 + ·s + \ln a_{10} =$
10
.
答案: 10 【解析】$\because$等比数列$\{ a_n \}$中的各项均为正数,$a_5a_6 = e^2$,$\therefore \ln a_1 + \ln a_2 + ·s + \ln a_{10} = \ln (a_1a_2·s a_{10}) = \ln (a_5a_6)^5 = \ln (e^2)^5 = \ln e^{10} = 10$.
17.[2023·黑龙江鹤岗第一中学高二月考]若正项数列$\{ a_n \}$满足$\frac{1}{a_{n + 1}} - \frac{1}{a_n} = 2$,$a_4 + a_5 = 3$,则$a_2 + a_3 =$ (
D
)

A.$\frac{1}{9}$
B.1
C.6
D.12
答案: D 【解析】由$\frac{1}{a_{n + 1}} - \frac{2}{a_n} = 0$可得$\frac{a_{n + 1}}{a_n} = \frac{1}{2}$,则$a_{n + 1} = \frac{1}{2}a_n$,所以数列$\{ a_n \}$是公比$q = \frac{1}{2}$的等比数列.又$a_4 + a_5 = 3$,所以$a_2q^2 + a_3q^2 = (a_2 + a_3)q^2 = 3$.将$q = \frac{1}{2}$代入,得$a_2 + a_3 = 3×4 = 12$.故选D.
方法总结:判定数列$\{ a_n \}$是等比数列的方法
(1)定义法:若数列$\{ a_n \}$满足$\frac{a_{n + 1}}{a_n} = q$($q$为常数且不为0),则数列$\{ a_n \}$是等比数列.
(2)等比中项法:对于数列$\{ a_n \}$,若$a_{n + 1}^2 = a_na_{n + 2}$,且$a_n \neq 0$,则数列$\{ a_n \}$是等比数列.
(3)通项公式法:若数列$\{ a_n \}$的通项公式为$a_n = a_1q^{n - 1}$,$a_1q \neq 0$,则数列$\{ a_n \}$是等比数列.
18.已知数列$\{ a_n \}$满足:$a_1 = 2,a_{n + 1} = 3a_n + 2$,则$\{ a_n \}$的通项公式为(
B
)

A.$a_n = 2n - 1$
B.$a_n = 3^n - 1$
C.$a_n = 2^{2n - 1}$
D.$a_n = 6n - 4$
答案: B 【解析】由$a_{n + 1} = 3a_n + 2$,得$a_{n + 1} + 1 = 3(a_n + 1)$,所以$\frac{a_{n + 1} + 1}{a_n + 1} = 3$,所以数列$\{ a_n + 1 \}$是首项为$a_1 + 1 = 3$,公比为3的等比数列,所以$a_n + 1 = 3×3^{n - 1} = 3^n$,则$a_n = 3^n - 1$.故选B.
19.已知数列$\{ a_n \}$满足$a_1 = 1,na_{n + 1} = 2(n + 1)a_n$,则$a_8 =$
1024
.
答案: 1024 【解析】因为$a_1 = 1$,$na_{n + 1} = 2(n + 1)a_n$,所以$\frac{a_{n + 1}}{n + 1} = 2·\frac{a_n}{n}$,所以数列$\{ \frac{a_n}{n} \}$是以1为首项,2为公比的等比数列,所以$\frac{a_n}{n} = 1×2^{n - 1}$,所以$a_n = n·2^{n - 1}$,所以$a_8 = 8×2^{8 - 1} = 2^3×2^7 = 2^{10} = 1024$.
20.在数列$\{ a_n \}$中,已知$a_1 = -1$,且$a_{n + 1} = 2a_n + 3n - 4(n \in \mathbf{N}^*)$.
(1)求证:数列$\{ a_{n + 1} - a_n + 3 \}$是等比数列;
(2)求数列$\{ a_n \}$的通项公式.
答案:
(1)【证明】令$b_n = a_{n + 1} - a_n + 3$,
则$b_{n + 1} = a_{n + 2} - a_{n + 1} + 3 = 2a_{n + 1} + 3(n + 1) - 4 - 2a_n - 3n + 4 + 3 = 2(a_{n + 1} - a_n + 3) = 2b_n$
因为$a_2 = 2a_1 - 1 = -3$,所以$b_1 = a_2 - a_1 + 3 = 1$,
所以数列$\{ b_n \}$是首项为1,公比为2的等比数列,
即数列$\{ a_{n + 1} - a_n + 3 \}$是首项为1,公比为2的等比数列.
(2)【解】由
(1)知$b_n = 2^{n - 1}$,即$a_{n + 1} - a_n + 3 = 2^{n - 1}$,
则$2a_n + 3n - 4 - a_n + 3 = 2^{n - 1}$,
所以$a_n = 2^{n - 1} - 3n + 1$($n \in \mathbf{N}^*$).
21.已知$\{ a_n \}$是等比数列,$a_{2012} = 4,a_{2024} = 16$,则$a_{2018} =$ (
C
)

A.$4 \sqrt{2}$
B.$\pm 4 \sqrt{2}$
C.8
D.$\pm 8$
答案: C 【解析】$\because$数列$\{ a_n \}$为等比数列,且$a_{2012} = 4$,$a_{2024} = 16$,$\therefore a_{2018}$是$a_{2012}$,$a_{2024}$的等比中项,且是同号的,$\therefore a_{2018} = \sqrt{a_{2012}·a_{2024}} = \sqrt{4×16} = 8$.故选C.
22.在等比数列$\{ a_n \}$中,$a_n a_{n + 1} = 4^{n - 1}$,则数列$\{ a_n \}$的公比为(
C
)

A.2或-2
B.4
C.2
D.$\sqrt{2}$
答案: C 【解析】设等比数列$\{ a_n \}$的公比为$q$.$\because a_na_{n + 1} = 4^{n - 1}>0$,$\therefore a_{n + 1}a_{n + 2} = 4^n$且$q>0$,两式相除可得$\frac{a_{n + 1}a_{n + 2}}{a_na_{n + 1}} = \frac{4^n}{4^{n - 1}} = 4$,即$q^2 = 4$,$\therefore q = 2$.故选C.

查看更多完整答案,请扫码查看

关闭