2025年成才之路高中新课程学习指导高中数学必修第二册北师大版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年成才之路高中新课程学习指导高中数学必修第二册北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
1. 点 C 在直线 AB 上,且$\overrightarrow{AC}=3\overrightarrow{AB}$,则$\overrightarrow{BC}$等于 (
A.$-2\overrightarrow{AB}$
B.$\frac{1}{3}\overrightarrow{AB}$
C.$-\frac{1}{3}\overrightarrow{AB}$
D.$2\overrightarrow{AB}$
D
)A.$-2\overrightarrow{AB}$
B.$\frac{1}{3}\overrightarrow{AB}$
C.$-\frac{1}{3}\overrightarrow{AB}$
D.$2\overrightarrow{AB}$
答案:
1.D $\overrightarrow{BC}=\overrightarrow{AC}-\overrightarrow{AB}=3\overrightarrow{AB}-\overrightarrow{AB}=2\overrightarrow{AB}$.
2. 下列说法中正确的是 (
A.$\lambda \boldsymbol{a}$与$\boldsymbol{a}$的方向不是相同就是相反
B.若$\boldsymbol{a},\boldsymbol{b}$共线,则$\boldsymbol{b}=\lambda\boldsymbol{a}$
C.若$|\boldsymbol{b}| = 2|\boldsymbol{a}|$,则$\boldsymbol{b} = \pm 2\boldsymbol{a}$
D.若$\boldsymbol{b} = \pm 2\boldsymbol{a}$,则$|\boldsymbol{b}| = 2|\boldsymbol{a}|$
D
)A.$\lambda \boldsymbol{a}$与$\boldsymbol{a}$的方向不是相同就是相反
B.若$\boldsymbol{a},\boldsymbol{b}$共线,则$\boldsymbol{b}=\lambda\boldsymbol{a}$
C.若$|\boldsymbol{b}| = 2|\boldsymbol{a}|$,则$\boldsymbol{b} = \pm 2\boldsymbol{a}$
D.若$\boldsymbol{b} = \pm 2\boldsymbol{a}$,则$|\boldsymbol{b}| = 2|\boldsymbol{a}|$
答案:
2.D 对于$\mathrm{A},\lambda=0$时,结论不成立;对于$\mathrm{B},a\neq0$时,结论成立;对于$\mathrm{C},|b|=2|a|$时,$b$与$a$不一定共线;对于$\mathrm{D}$,利用平面向量共线定理可知正确.
3. 已知四边形$ABCD$是菱形,点$P$在对角线$AC$上(不包括端点$A$、$C$),则$\overrightarrow{AP}=$ (
A.$\lambda(\overrightarrow{AB}+\overrightarrow{BC}) \quad \lambda\in(0,1)$
B.$\lambda(\overrightarrow{AB}+\overrightarrow{BC}) \quad \lambda\in\left(0,\frac{\sqrt{2}}{2}\right)$
C.$\lambda(\overrightarrow{AB}-\overrightarrow{BC}) \quad \lambda\in(0,1)$
D.$\lambda(\overrightarrow{AB}-\overrightarrow{BC}) \quad \lambda\in\left(0,\frac{\sqrt{2}}{2}\right)$
A
)A.$\lambda(\overrightarrow{AB}+\overrightarrow{BC}) \quad \lambda\in(0,1)$
B.$\lambda(\overrightarrow{AB}+\overrightarrow{BC}) \quad \lambda\in\left(0,\frac{\sqrt{2}}{2}\right)$
C.$\lambda(\overrightarrow{AB}-\overrightarrow{BC}) \quad \lambda\in(0,1)$
D.$\lambda(\overrightarrow{AB}-\overrightarrow{BC}) \quad \lambda\in\left(0,\frac{\sqrt{2}}{2}\right)$
答案:
3.A 设$P$是对角线$AC$上的一点(不含$A,C$),过$P$分别作$BC$、$AB$的平行线,设$\overrightarrow{AP}=\lambda\overrightarrow{AC}$,则$\lambda\in(0,1)$,于是$\overrightarrow{AP}=\lambda(\overrightarrow{AB}+\overrightarrow{BC})$,$\lambda\in(0,1)$.
4. 设向量$\overrightarrow{OA}=\boldsymbol{e}_1,\overrightarrow{OB}=\boldsymbol{e}_2$,若$\boldsymbol{e}_1$与$\boldsymbol{e}_2$不共线,且点$P$在线段$AB$上,$|\overrightarrow{AP}|:|\overrightarrow{PB}| = 2$,则$\overrightarrow{OP}=$ (

A.$\frac{1}{3}\boldsymbol{e}_1 - \frac{2}{3}\boldsymbol{e}_2$
B.$\frac{2}{3}\boldsymbol{e}_1 + \frac{1}{3}\boldsymbol{e}_2$
C.$\frac{1}{3}\boldsymbol{e}_1 + \frac{2}{3}\boldsymbol{e}_2$
D.$\frac{2}{3}\boldsymbol{e}_1 - \frac{1}{3}\boldsymbol{e}_2$
C
)A.$\frac{1}{3}\boldsymbol{e}_1 - \frac{2}{3}\boldsymbol{e}_2$
B.$\frac{2}{3}\boldsymbol{e}_1 + \frac{1}{3}\boldsymbol{e}_2$
C.$\frac{1}{3}\boldsymbol{e}_1 + \frac{2}{3}\boldsymbol{e}_2$
D.$\frac{2}{3}\boldsymbol{e}_1 - \frac{1}{3}\boldsymbol{e}_2$
答案:
4.C 由$\overrightarrow{OP}=\overrightarrow{OA}+\overrightarrow{AP}$,$\overrightarrow{AP}=\frac{2}{3}\overrightarrow{AB}$,$\overrightarrow{AB}=\overrightarrow{OB}-\overrightarrow{OA}$,$\therefore\overrightarrow{OP}=\overrightarrow{OA}+\frac{2}{3}(\overrightarrow{OB}-\overrightarrow{OA})=\boldsymbol{e}_{1}+\frac{2}{3}(\boldsymbol{e}_{2}-\boldsymbol{e}_{1})=\frac{1}{3}\boldsymbol{e}_{1}+\frac{2}{3}\boldsymbol{e}_{2}$.故选C.
5. 在$\triangle ABC$中,已知$D$是$AB$边上一点,若$\overrightarrow{AD} = 2\overrightarrow{DB}$,$\overrightarrow{CD}=\frac{1}{3}\overrightarrow{CA} + \lambda\overrightarrow{CB}$,则$\lambda$等于 (
A.$\frac{2}{3}$
B.$\frac{1}{3}$
C.$-\frac{1}{3}$
D.$-\frac{2}{3}$
A
)A.$\frac{2}{3}$
B.$\frac{1}{3}$
C.$-\frac{1}{3}$
D.$-\frac{2}{3}$
答案:
5.A 方法一:由$\overrightarrow{AD}=2\overrightarrow{DB}$,可得$\overrightarrow{CD}-\overrightarrow{CA}=2(\overrightarrow{CB}-\overrightarrow{CD})\Rightarrow\overrightarrow{CD}=\frac{1}{3}\overrightarrow{CA}+\frac{2}{3}\overrightarrow{CB}$,所以$\lambda=\frac{2}{3}$.故选A.
方法二:$\overrightarrow{CD}=\overrightarrow{CA}+\overrightarrow{AD}=\overrightarrow{CA}+\frac{2}{3}\overrightarrow{AB}=\overrightarrow{CA}+\frac{2}{3}(\overrightarrow{CB}-\overrightarrow{CA})=\frac{1}{3}\overrightarrow{CA}+\frac{2}{3}\overrightarrow{CB}$,所以$\lambda=\frac{2}{3}$,故选A.
方法二:$\overrightarrow{CD}=\overrightarrow{CA}+\overrightarrow{AD}=\overrightarrow{CA}+\frac{2}{3}\overrightarrow{AB}=\overrightarrow{CA}+\frac{2}{3}(\overrightarrow{CB}-\overrightarrow{CA})=\frac{1}{3}\overrightarrow{CA}+\frac{2}{3}\overrightarrow{CB}$,所以$\lambda=\frac{2}{3}$,故选A.
6. 已知$\boldsymbol{a},\boldsymbol{b}$是两个不共线的向量,向量$\boldsymbol{b} + t\boldsymbol{a},\frac{2}{3}\boldsymbol{a} - \frac{1}{3}\boldsymbol{b}$共线,则实数$t$的值为 (
A.$-\frac{1}{2}$
B.$\frac{1}{2}$
C.$-2$
D.$2$
C
)A.$-\frac{1}{2}$
B.$\frac{1}{2}$
C.$-2$
D.$2$
答案:
6.C 向量$\boldsymbol{a},\boldsymbol{b}$不共线,则$\frac{2}{3}\boldsymbol{a}-\frac{1}{3}\boldsymbol{b}\neq0$,由$\boldsymbol{b}+t\boldsymbol{a}$,$\frac{2}{3}\boldsymbol{a}-\frac{1}{3}\boldsymbol{b}$共线,得$\boldsymbol{b}+t\boldsymbol{a}=\lambda(\frac{2}{3}\boldsymbol{a}-\frac{1}{3}\boldsymbol{b})$,$\lambda\in\mathbf{R}$,于是$(t-\frac{2}{3}\lambda)\boldsymbol{a}+(1+\frac{1}{3}\lambda)\boldsymbol{b}=0$,则$t-\frac{2}{3}\lambda=0$且$1+\frac{1}{3}\lambda=0$,解得$\lambda=-3$,$t=-2$,所以实数$t$的值为$-2$.故选C.
7. 已知向量$\boldsymbol{a},\boldsymbol{b}$不共线,实数$x,y$满足$5x\boldsymbol{a} + (8 - y)\boldsymbol{b} = 4x\boldsymbol{b} + 3(y + 9)\boldsymbol{a}$,则$x =$
3
;$y =$-4
.
答案:
7.$3\ -4$ 因为$\boldsymbol{a}$与$\boldsymbol{b}$不共线,根据向量相等得$\begin{cases}5x=3y + 27\\8 - y = 4x\end{cases}$,解得$\begin{cases}x = 3\\y = -4\end{cases}$.
8. 已知$\boldsymbol{a},\boldsymbol{b}$是不共线的向量,$\overrightarrow{OA} = \lambda\boldsymbol{a} + \mu\boldsymbol{b}$,$\overrightarrow{OB} = 3\boldsymbol{a} - 2\boldsymbol{b}$,$\overrightarrow{OC} = 2\boldsymbol{a} + 3\boldsymbol{b}$,若$A,B,C$三点共线,则实数$\lambda,\mu$满足
5λ+μ=13
.
答案:
8.$5\lambda+\mu=13$ 方法一:因为$A,B,C$三点共线,所以设$\overrightarrow{OA}=m\overrightarrow{OB}+(1 - m)\overrightarrow{OC}$,即:$\lambda\boldsymbol{a}+\mu\boldsymbol{b}=m(3\boldsymbol{a}-2\boldsymbol{b})+(1 - m)(2\boldsymbol{a}+3\boldsymbol{b})=(m + 2)\boldsymbol{a}+(-5m + 3)\boldsymbol{b}$,所以$\begin{cases}m + 2 = \lambda\\-5m + 3 = \mu\end{cases}$,消去$m$得:$5\lambda+\mu=13$.
方法二:$\overrightarrow{BA}=\overrightarrow{OA}-\overrightarrow{OB}=(\lambda\boldsymbol{a}+\mu\boldsymbol{b})-(3\boldsymbol{a}-2\boldsymbol{b})=(\lambda - 3)\boldsymbol{a}+(\mu + 2)\boldsymbol{b}$,$\overrightarrow{BC}=\overrightarrow{OC}-\overrightarrow{OB}=2\boldsymbol{a}+3\boldsymbol{b}-(3\boldsymbol{a}-2\boldsymbol{b})=-\boldsymbol{a}+5\boldsymbol{b}$,因为$A,B,C$三点共线,所以$\overrightarrow{BA}//\overrightarrow{BC}$,故$5(\lambda - 3)=-(\mu + 2)$,所以$5\lambda+\mu=13$.
方法二:$\overrightarrow{BA}=\overrightarrow{OA}-\overrightarrow{OB}=(\lambda\boldsymbol{a}+\mu\boldsymbol{b})-(3\boldsymbol{a}-2\boldsymbol{b})=(\lambda - 3)\boldsymbol{a}+(\mu + 2)\boldsymbol{b}$,$\overrightarrow{BC}=\overrightarrow{OC}-\overrightarrow{OB}=2\boldsymbol{a}+3\boldsymbol{b}-(3\boldsymbol{a}-2\boldsymbol{b})=-\boldsymbol{a}+5\boldsymbol{b}$,因为$A,B,C$三点共线,所以$\overrightarrow{BA}//\overrightarrow{BC}$,故$5(\lambda - 3)=-(\mu + 2)$,所以$5\lambda+\mu=13$.
9. 设$D$、$E$分别是$\triangle ABC$的边$AB$、$BC$上的点,$AD = \frac{1}{2}AB$,$BE = \frac{2}{3}BC$.若$\overrightarrow{DE} = \lambda_1\overrightarrow{AB} + \lambda_2\overrightarrow{AC}$($\lambda_1,\lambda_2$为实数),则$\lambda_1 + \lambda_2$的值为
$\frac{1}{2}$
.
答案:
9.$\frac{1}{2}$ 由已知$\overrightarrow{DE}=\overrightarrow{BE}-\overrightarrow{BD}=\frac{2}{3}\overrightarrow{BC}-\frac{1}{2}\overrightarrow{BA}=\frac{2}{3}(\overrightarrow{AC}-\overrightarrow{AB})+\frac{1}{2}\overrightarrow{AB}=-\frac{1}{6}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AC}$,$\therefore\lambda_{1}=-\frac{1}{6}$,$\lambda_{2}=\frac{2}{3}$,从而$\lambda_{1}+\lambda_{2}=\frac{1}{2}$.
9.$\frac{1}{2}$ 由已知$\overrightarrow{DE}=\overrightarrow{BE}-\overrightarrow{BD}=\frac{2}{3}\overrightarrow{BC}-\frac{1}{2}\overrightarrow{BA}=\frac{2}{3}(\overrightarrow{AC}-\overrightarrow{AB})+\frac{1}{2}\overrightarrow{AB}=-\frac{1}{6}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AC}$,$\therefore\lambda_{1}=-\frac{1}{6}$,$\lambda_{2}=\frac{2}{3}$,从而$\lambda_{1}+\lambda_{2}=\frac{1}{2}$.
10. 已知非零向量$\boldsymbol{e}_1$和$\boldsymbol{e}_2$不共线.
(1)如果$\overrightarrow{AB} = \boldsymbol{e}_1 + \boldsymbol{e}_2$,$\overrightarrow{BC} = 2\boldsymbol{e}_1 + 8\boldsymbol{e}_2$,$\overrightarrow{CD} = 3(\boldsymbol{e}_1 - \boldsymbol{e}_2)$,求证:$A,B,D$三点共线;
(2)欲使向量$k\boldsymbol{e}_1 + \boldsymbol{e}_2$与$\boldsymbol{e}_1 + k\boldsymbol{e}_2$平行,试确定实数$k$的值.
(1)如果$\overrightarrow{AB} = \boldsymbol{e}_1 + \boldsymbol{e}_2$,$\overrightarrow{BC} = 2\boldsymbol{e}_1 + 8\boldsymbol{e}_2$,$\overrightarrow{CD} = 3(\boldsymbol{e}_1 - \boldsymbol{e}_2)$,求证:$A,B,D$三点共线;
(2)欲使向量$k\boldsymbol{e}_1 + \boldsymbol{e}_2$与$\boldsymbol{e}_1 + k\boldsymbol{e}_2$平行,试确定实数$k$的值.
答案:
10.
(1)证明:因为$\overrightarrow{BD}=\overrightarrow{BC}+\overrightarrow{CD}=5\boldsymbol{e}_{1}+5\boldsymbol{e}_{2}=5\overrightarrow{AB}$,且$\overrightarrow{AB}$为非零向量,所以$\overrightarrow{AB}$与$\overrightarrow{BD}$共线,即$A,B,D$三点共线.
(2)因为$k\boldsymbol{e}_{1}+\boldsymbol{e}_{2}$与$\boldsymbol{e}_{1}+k\boldsymbol{e}_{2}$平行,且两向量都为非零向量,所以存在实数$\lambda$使得$k\boldsymbol{e}_{1}+\boldsymbol{e}_{2}=\lambda(\boldsymbol{e}_{1}+k\boldsymbol{e}_{2})$成立,即$(k - \lambda)\boldsymbol{e}_{1}=(k\lambda - 1)\boldsymbol{e}_{2}$,因为$\boldsymbol{e}_{1}$和$\boldsymbol{e}_{2}$不共线,所以$\begin{cases}k - \lambda = 0\\\lambda k - 1 = 0\end{cases}$,所以$k=\pm1$.
(1)证明:因为$\overrightarrow{BD}=\overrightarrow{BC}+\overrightarrow{CD}=5\boldsymbol{e}_{1}+5\boldsymbol{e}_{2}=5\overrightarrow{AB}$,且$\overrightarrow{AB}$为非零向量,所以$\overrightarrow{AB}$与$\overrightarrow{BD}$共线,即$A,B,D$三点共线.
(2)因为$k\boldsymbol{e}_{1}+\boldsymbol{e}_{2}$与$\boldsymbol{e}_{1}+k\boldsymbol{e}_{2}$平行,且两向量都为非零向量,所以存在实数$\lambda$使得$k\boldsymbol{e}_{1}+\boldsymbol{e}_{2}=\lambda(\boldsymbol{e}_{1}+k\boldsymbol{e}_{2})$成立,即$(k - \lambda)\boldsymbol{e}_{1}=(k\lambda - 1)\boldsymbol{e}_{2}$,因为$\boldsymbol{e}_{1}$和$\boldsymbol{e}_{2}$不共线,所以$\begin{cases}k - \lambda = 0\\\lambda k - 1 = 0\end{cases}$,所以$k=\pm1$.
1. 设$\boldsymbol{a}$是非零向量,$\lambda$是非零实数,下列结论正确的是 (
A.$\boldsymbol{a}$与$-\lambda\boldsymbol{a}$的方向相反
B.$|-\lambda\boldsymbol{a}| \geq |\boldsymbol{a}|$
C.$\boldsymbol{a}$与$\lambda^2\boldsymbol{a}$的方向相同
D.$| - \lambda\boldsymbol{a}| = |\lambda|\boldsymbol{a}$
C
)A.$\boldsymbol{a}$与$-\lambda\boldsymbol{a}$的方向相反
B.$|-\lambda\boldsymbol{a}| \geq |\boldsymbol{a}|$
C.$\boldsymbol{a}$与$\lambda^2\boldsymbol{a}$的方向相同
D.$| - \lambda\boldsymbol{a}| = |\lambda|\boldsymbol{a}$
答案:
1.C A错误,因为$\lambda$取负数时,$\boldsymbol{a}$与$-\lambda\boldsymbol{a}$的方向是相同的;B错误,因为当$|\lambda|\lt1$时,该式不成立;D错误,等号左边的结果是一个数,而右边的结果是一个向量,不可能相等;C正确,因为$\lambda^{2}(\lambda\neq0)$一定是正数,故$\boldsymbol{a}$与$\lambda^{2}\boldsymbol{a}$的方向相同.故选C.
2. 在$□ ABCD$中,$AC$与$BD$交于点$O$,$E$是线段$OD$的中点,$AE$的延长线交$CD$于点$F$,若$\overrightarrow{AC} = \boldsymbol{a},\overrightarrow{BD} = \boldsymbol{b}$,则$\overrightarrow{AF} =$ (

A.$\frac{1}{4}\boldsymbol{a} + \frac{1}{2}\boldsymbol{b}$
B.$\frac{1}{3}\boldsymbol{a} + \frac{2}{3}\boldsymbol{b}$
C.$\frac{1}{2}\boldsymbol{a} + \frac{1}{4}\boldsymbol{b}$
D.$\frac{2}{3}\boldsymbol{a} + \frac{1}{3}\boldsymbol{b}$
D
)A.$\frac{1}{4}\boldsymbol{a} + \frac{1}{2}\boldsymbol{b}$
B.$\frac{1}{3}\boldsymbol{a} + \frac{2}{3}\boldsymbol{b}$
C.$\frac{1}{2}\boldsymbol{a} + \frac{1}{4}\boldsymbol{b}$
D.$\frac{2}{3}\boldsymbol{a} + \frac{1}{3}\boldsymbol{b}$
答案:
2.D 方法一:$\overrightarrow{AF}=\overrightarrow{AC}+\overrightarrow{CF}=\boldsymbol{a}+\frac{2}{3}\overrightarrow{CD}=\boldsymbol{a}+\frac{2}{3}(\frac{1}{2}(\overrightarrow{BD}-\frac{1}{2}\overrightarrow{AC}))=\boldsymbol{a}+\frac{1}{3}(\boldsymbol{b}-\boldsymbol{a})=\frac{2}{3}\boldsymbol{a}+\frac{1}{3}\boldsymbol{b}$.
方法二:$\overrightarrow{AE}=\frac{1}{2}\boldsymbol{a}+\frac{1}{4}\boldsymbol{b}=\frac{3}{4}(\frac{2}{3}\boldsymbol{a}+\frac{1}{3}\boldsymbol{b})$,又$\overrightarrow{AE}=\frac{3}{4}\overrightarrow{AF}$,选D.
方法二:$\overrightarrow{AE}=\frac{1}{2}\boldsymbol{a}+\frac{1}{4}\boldsymbol{b}=\frac{3}{4}(\frac{2}{3}\boldsymbol{a}+\frac{1}{3}\boldsymbol{b})$,又$\overrightarrow{AE}=\frac{3}{4}\overrightarrow{AF}$,选D.
查看更多完整答案,请扫码查看