2025年成才之路高中新课程学习指导高中数学必修第二册北师大版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年成才之路高中新课程学习指导高中数学必修第二册北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
1. 已知$\sin\alpha=\frac{4}{5}$,则$\cos(\frac{\pi}{2}+\alpha)=$ (
A.$-\frac{4}{5}$
B.$-\frac{3}{5}$
C.$\frac{3}{5}$
D.$\frac{4}{5}$
A
)A.$-\frac{4}{5}$
B.$-\frac{3}{5}$
C.$\frac{3}{5}$
D.$\frac{4}{5}$
答案:
1.A $\cos \left(\frac{\pi}{2}+\alpha\right)=-\sin \alpha=-\frac{4}{5}$. 故选A.
2. 若$\sin(\frac{\pi}{2}-\theta)<0$,且$\cos(\frac{3\pi}{2}-\theta)>0$,则$\theta$是 (
A.第一象限角
B.第二象限角
C.第三象限角
D.第四象限角
C
)A.第一象限角
B.第二象限角
C.第三象限角
D.第四象限角
答案:
2.C 由于$\sin \left(\frac{\pi}{2}-\theta\right)=\cos \theta<0,\cos \left(\frac{3\pi}{2}-\theta\right)=-\sin \theta>0$,
即$\sin \theta<0$,所以角$\theta$的终边落在第三象限,故选C.
即$\sin \theta<0$,所以角$\theta$的终边落在第三象限,故选C.
3. 已知$\cos(\frac{\pi}{4}+\alpha)=-\frac{1}{2}$,则$\sin(\frac{\pi}{4}-\alpha)$等于 (
A.$-\frac{1}{2}$
B.$\frac{1}{2}$
C.$-\frac{\sqrt{2}}{2}$
D.$\frac{\sqrt{2}}{2}$
A
)A.$-\frac{1}{2}$
B.$\frac{1}{2}$
C.$-\frac{\sqrt{2}}{2}$
D.$\frac{\sqrt{2}}{2}$
答案:
3.A $\sin \left(\frac{\pi}{4}-\alpha\right)=\sin \left[\frac{\pi}{2}-\left(\frac{\pi}{4}+\alpha\right)\right]$
$=\cos \left(\frac{\pi}{4}+\alpha\right)=-\frac{1}{2}$,故选A.
$=\cos \left(\frac{\pi}{4}+\alpha\right)=-\frac{1}{2}$,故选A.
4. 若$\sin(\pi+\alpha)+\cos(\frac{\pi}{2}+\alpha)=-m$,则$\cos(\frac{\pi}{2}-\alpha)+2\sin(3\pi-\alpha)$的值为 (
A.$-\frac{2}{3}m$
B.$\frac{2}{3}m$
C.$-\frac{3}{2}m$
D.$\frac{3}{2}m$
D
)A.$-\frac{2}{3}m$
B.$\frac{2}{3}m$
C.$-\frac{3}{2}m$
D.$\frac{3}{2}m$
答案:
4.D 由$\sin (\pi+\alpha)+\cos \left(\frac{\pi}{2}+\alpha\right)=-\sin \alpha-\sin \alpha=-2\sin \alpha=$
$-m,\therefore \sin \alpha=\frac{m}{2},\therefore \cos \left(\frac{\pi}{2}-\alpha\right)+2\sin (3\pi-\alpha)=\sin \alpha+2\sin (\pi$
$-\alpha)=3\sin \alpha=\frac{3}{2}m$. 故选D.
$-m,\therefore \sin \alpha=\frac{m}{2},\therefore \cos \left(\frac{\pi}{2}-\alpha\right)+2\sin (3\pi-\alpha)=\sin \alpha+2\sin (\pi$
$-\alpha)=3\sin \alpha=\frac{3}{2}m$. 故选D.
5. 平面直角坐标系中,角$\alpha$的终边经过点$P(6,2\sqrt{3})$,则$\sin(\alpha-\frac{3\pi}{2})=$ (
A.$\frac{1}{2}$
B.$-\frac{1}{2}$
C.$\frac{\sqrt{3}}{2}$
D.$-\frac{\sqrt{3}}{2}$
C
)A.$\frac{1}{2}$
B.$-\frac{1}{2}$
C.$\frac{\sqrt{3}}{2}$
D.$-\frac{\sqrt{3}}{2}$
答案:
5.C 由角$\alpha$的终边经过点$P(6,2\sqrt{3})$,利用三角函数的定义
可得
$\sin \alpha=\frac{2\sqrt{3}}{\sqrt{6^{2}+(2\sqrt{3})^{2}}}=\frac{1}{2},\cos \alpha=\frac{6}{\sqrt{6^{2}+(2\sqrt{3})^{2}}}=\frac{\sqrt{3}}{2}$,由诱
导公式可得$\sin \left(\alpha-\frac{3\pi}{2}\right)=\cos \alpha=\frac{\sqrt{3}}{2}$. 故选C.
可得
$\sin \alpha=\frac{2\sqrt{3}}{\sqrt{6^{2}+(2\sqrt{3})^{2}}}=\frac{1}{2},\cos \alpha=\frac{6}{\sqrt{6^{2}+(2\sqrt{3})^{2}}}=\frac{\sqrt{3}}{2}$,由诱
导公式可得$\sin \left(\alpha-\frac{3\pi}{2}\right)=\cos \alpha=\frac{\sqrt{3}}{2}$. 故选C.
6. $A=\frac{\sin(k\pi+\alpha)}{|\sin\alpha|}+\frac{\cos(k\pi+\alpha)}{|\cos\alpha|}(k\in\mathbf{Z})$的值为 (
A.$-2$
B.$0$
C.$2$
D.$\pm2$或$0$
D
)A.$-2$
B.$0$
C.$2$
D.$\pm2$或$0$
答案:
6.D 当$k=2n,n\in Z$时,$A=\frac{\sin \alpha}{|\sin \alpha|}+\frac{\cos \alpha}{|\cos \alpha|}$,$\alpha$为第Ⅰ象限
角时,$A=\frac{\sin \alpha}{\sin \alpha}+\frac{\cos \alpha}{\cos \alpha}=2$,$\alpha$为第Ⅱ象限角时,$A=\frac{\sin \alpha}{\sin \alpha}+\frac{\cos \alpha}{-\cos \alpha}=0$,$\alpha$为第Ⅲ象限时,$A=\frac{\sin \alpha}{-\sin \alpha}+\frac{\cos \alpha}{-\cos \alpha}=-2$,$\alpha$
为第Ⅳ象限时,$A=\frac{\sin \alpha}{-\sin \alpha}+\frac{\cos \alpha}{\cos \alpha}=0$,当$k=2n+1,n\in Z$
时,$A=\frac{-\sin \alpha}{|\sin \alpha|}+\frac{-\cos \alpha}{|\cos \alpha|}$,当$\alpha$为第Ⅰ象限时,$A=\frac{-\sin \alpha}{\sin \alpha}+\frac{-\cos \alpha}{-\cos \alpha}=-2$,当$\alpha$为第Ⅱ象限时,$A=\frac{-\sin \alpha}{\sin \alpha}+\frac{-\cos \alpha}{-\cos \alpha}=$
$0$,当$\alpha$为第Ⅲ象限时,$A=\frac{-\sin \alpha}{-\sin \alpha}+\frac{-\cos \alpha}{-\cos \alpha}=2$,当$\alpha$为第
Ⅳ象限时,$A=\frac{-\sin \alpha}{-\sin \alpha}+\frac{-\cos \alpha}{\cos \alpha}=0$. 综上,$A$的值为2或-2
或0. 故选D.
角时,$A=\frac{\sin \alpha}{\sin \alpha}+\frac{\cos \alpha}{\cos \alpha}=2$,$\alpha$为第Ⅱ象限角时,$A=\frac{\sin \alpha}{\sin \alpha}+\frac{\cos \alpha}{-\cos \alpha}=0$,$\alpha$为第Ⅲ象限时,$A=\frac{\sin \alpha}{-\sin \alpha}+\frac{\cos \alpha}{-\cos \alpha}=-2$,$\alpha$
为第Ⅳ象限时,$A=\frac{\sin \alpha}{-\sin \alpha}+\frac{\cos \alpha}{\cos \alpha}=0$,当$k=2n+1,n\in Z$
时,$A=\frac{-\sin \alpha}{|\sin \alpha|}+\frac{-\cos \alpha}{|\cos \alpha|}$,当$\alpha$为第Ⅰ象限时,$A=\frac{-\sin \alpha}{\sin \alpha}+\frac{-\cos \alpha}{-\cos \alpha}=-2$,当$\alpha$为第Ⅱ象限时,$A=\frac{-\sin \alpha}{\sin \alpha}+\frac{-\cos \alpha}{-\cos \alpha}=$
$0$,当$\alpha$为第Ⅲ象限时,$A=\frac{-\sin \alpha}{-\sin \alpha}+\frac{-\cos \alpha}{-\cos \alpha}=2$,当$\alpha$为第
Ⅳ象限时,$A=\frac{-\sin \alpha}{-\sin \alpha}+\frac{-\cos \alpha}{\cos \alpha}=0$. 综上,$A$的值为2或-2
或0. 故选D.
7. 计算$\cos(-\frac{17}{4}\pi)+\sin\frac{26\pi}{3}=$
$\frac{\sqrt{3}+\sqrt{2}}{2}$
答案:
7.$\frac{\sqrt{3}+\sqrt{2}}{2}$ 依题意,原式$=\cos \frac{17\pi}{4}+\sin \frac{26\pi}{3}$
$=\cos \left(4\pi+\frac{\pi}{4}\right)+\sin \left(8\pi+\frac{2\pi}{3}\right)=\cos \frac{\pi}{4}+\sin \frac{2\pi}{3}=\frac{\sqrt{3}+\sqrt{2}}{2}$
$=\cos \left(4\pi+\frac{\pi}{4}\right)+\sin \left(8\pi+\frac{2\pi}{3}\right)=\cos \frac{\pi}{4}+\sin \frac{2\pi}{3}=\frac{\sqrt{3}+\sqrt{2}}{2}$
8. 化简$\frac{\sin(\frac{15\pi}{2}+\alpha)\cos(\alpha-\frac{\pi}{2})}{\sin(\frac{9\pi}{2}-\alpha)\cos(\frac{3\pi}{2}+\alpha)}=$
-1
.
答案:
8.-1 原式$=\frac{\sin \left(-\frac{\pi}{2}+\alpha\right)\cos \left(\frac{\pi}{2}-\alpha\right)}{\sin \left(\frac{\pi}{2}-\alpha\right)· \sin \alpha}=\frac{-\cos \alpha · \sin \alpha}{\cos \alpha · \sin \alpha}$
$=-1$.
$=-1$.
9. 已知$f(\sin x)=\cos3x$,则$f(\cos10^{\circ})=$
$-\frac{1}{2}$
答案:
9.$-\frac{1}{2}$ 因为$\cos 10°=\sin 80°$,
所以$f(\cos 10°)=f(\sin 80°)=\cos (3×80°)$
$=\cos 240°=\cos (180°+60°)=-\cos 60°=-\frac{1}{2}$
所以$f(\cos 10°)=f(\sin 80°)=\cos (3×80°)$
$=\cos 240°=\cos (180°+60°)=-\cos 60°=-\frac{1}{2}$
10. 化简$\frac{\sin(\frac{3\pi}{2}+\alpha)\cos(\frac{\pi}{2}-\alpha)}{\cos(10\pi+\alpha)}+$
$\frac{\sin(11\pi-\alpha)\cos(\frac{5\pi}{2}+\alpha)}{\sin(\pi+\alpha)}+$
$\frac{\sin(11\pi-\alpha)\cos(\frac{5\pi}{2}+\alpha)}{\sin(\pi+\alpha)}+$
答案:
10.原式$=\frac{-\cos \alpha\sin \alpha+\sin \alpha(-\sin \alpha)}{-\sin \alpha}$
$=-\sin \alpha+\sin \alpha=0$.
$=-\sin \alpha+\sin \alpha=0$.
1. 已知$\sin(\alpha-\frac{\pi}{6})=\frac{1}{3}$,则$\cos(\alpha+\frac{\pi}{3})$的值为 (
A.$-\frac{2\sqrt{3}}{3}$
B.$\frac{2\sqrt{3}}{3}$
C.$\frac{1}{3}$
D.$-\frac{1}{3}$
D
)A.$-\frac{2\sqrt{3}}{3}$
B.$\frac{2\sqrt{3}}{3}$
C.$\frac{1}{3}$
D.$-\frac{1}{3}$
答案:
1.D $\because \sin \left(\alpha-\frac{\pi}{6}\right)=\frac{1}{3}$
$\therefore \cos \left(\alpha+\frac{\pi}{3}\right)=\cos \left[\left(\alpha-\frac{\pi}{6}\right)+\frac{\pi}{2}\right]$
$=-\sin \left(\alpha-\frac{\pi}{6}\right)=-\frac{1}{3}$.
$\therefore \cos \left(\alpha+\frac{\pi}{3}\right)=\cos \left[\left(\alpha-\frac{\pi}{6}\right)+\frac{\pi}{2}\right]$
$=-\sin \left(\alpha-\frac{\pi}{6}\right)=-\frac{1}{3}$.
2. 已知角$\alpha$的终边上有一点$P(1,3)$,则
$\sin(\pi-\alpha)-\sin(\frac{\pi}{2}+\alpha)$
$\cos(\frac{3\pi}{2}-\alpha)+2\cos(-\pi+\alpha)$的值为 (
A.$-\frac{2}{5}$
B.$-\frac{4}{5}$
C.$-\frac{4}{7}$
D.$-4$
$\sin(\pi-\alpha)-\sin(\frac{\pi}{2}+\alpha)$
$\cos(\frac{3\pi}{2}-\alpha)+2\cos(-\pi+\alpha)$的值为 (
A
)A.$-\frac{2}{5}$
B.$-\frac{4}{5}$
C.$-\frac{4}{7}$
D.$-4$
答案:
2.A $\because$角$\alpha$的终边上有一点$P(1,3)$,在第一象限,
$\therefore$由三角函数的定义知$\sin \alpha=\frac{3}{\sqrt{10}},\cos \alpha=\frac{1}{\sqrt{10}}$
$\sin (\pi-\alpha)-\sin \left(\frac{\pi}{2}+\alpha\right)$
$\because \cos \left(\frac{3}{2}\pi-\alpha\right)+2\cos (-\pi+\alpha)$
$=\frac{\sin \alpha-\cos \alpha}{-\sin \alpha-2\cos \alpha}=\frac{\frac{3}{\sqrt{10}}-\frac{1}{\sqrt{10}}}{-\frac{3}{\sqrt{10}}-\frac{2}{\sqrt{10}}}=-\frac{2}{5},\therefore$选A.
$\therefore$由三角函数的定义知$\sin \alpha=\frac{3}{\sqrt{10}},\cos \alpha=\frac{1}{\sqrt{10}}$
$\sin (\pi-\alpha)-\sin \left(\frac{\pi}{2}+\alpha\right)$
$\because \cos \left(\frac{3}{2}\pi-\alpha\right)+2\cos (-\pi+\alpha)$
$=\frac{\sin \alpha-\cos \alpha}{-\sin \alpha-2\cos \alpha}=\frac{\frac{3}{\sqrt{10}}-\frac{1}{\sqrt{10}}}{-\frac{3}{\sqrt{10}}-\frac{2}{\sqrt{10}}}=-\frac{2}{5},\therefore$选A.
3. (多选)已知$x\in\mathbf{R}$,则下列等式恒成立的是 (
A.$\sin(-x)=\sin x$
B.$\sin(\frac{3\pi}{2}-x)=\cos x$
C.$\cos(\frac{\pi}{2}+x)=-\sin x$
D.$\cos(x-\pi)=-\cos x$
CD
)A.$\sin(-x)=\sin x$
B.$\sin(\frac{3\pi}{2}-x)=\cos x$
C.$\cos(\frac{\pi}{2}+x)=-\sin x$
D.$\cos(x-\pi)=-\cos x$
答案:
3.CD 因为$\sin (-x)=-\sin x$,故A不成立;
因为$\sin \left(\frac{3\pi}{2}-x\right)=-\cos x$,故B不成立;
因为$\cos \left(\frac{\pi}{2}+x\right)=-\sin x$,故C成立;
因为$\cos (x-\pi)=-\cos x$,故D成立.故选CD.
因为$\sin \left(\frac{3\pi}{2}-x\right)=-\cos x$,故B不成立;
因为$\cos \left(\frac{\pi}{2}+x\right)=-\sin x$,故C成立;
因为$\cos (x-\pi)=-\cos x$,故D成立.故选CD.
查看更多完整答案,请扫码查看