2025年成才之路高中新课程学习指导高中数学必修第二册北师大版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年成才之路高中新课程学习指导高中数学必修第二册北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年成才之路高中新课程学习指导高中数学必修第二册北师大版》

1. 使得函数$y = \sin x$为减函数,且值为负数的区间为 (
C
)

A.$\left( 0,\frac{\pi}{2} \right)$
B.$\left( \frac{\pi}{2},\pi \right)$
C.$\left( \pi,\frac{3\pi}{2} \right)$
D.$\left( \frac{3\pi}{2},2\pi \right)$
答案: 1.C由$y = \sin x$的图象与性质可知$x \in \left( \pi,\frac{3\pi}{2} \right)$时,函数单调递减,且函数值为负数.故选C.
2. 下列函数具有奇偶性的是 (
C
)

A.$y = \sin x(x > 0)$
B.$y = 2\sin x(x < 0)$
C.$y = \sin \frac{1}{x}(x \neq 0)$
D.$y = \sqrt{2\sin x}$
答案: 2.C对于选项A,定义域为$(0, + \infty)$,不关于原点对称;对于选项B,定义域为$( - \infty,0)$,不关于原点对称;对于选项C,定义域为$( - \infty,0) \cup (0, + \infty)$关于原点对称,并且$f( - x) = \sin\left( - \frac{1}{x} \right) = - \sin\frac{1}{x} = - f(x)$,所以为奇函数;对于选项D,定义域不关于原点对称.
3. 函数$y = |\sin x|$的一个单调增区间是 (
C
)

A.$\left( - \frac{\pi}{4},\frac{\pi}{4} \right)$
B.$\left( \frac{\pi}{4},\frac{3\pi}{4} \right)$
C.$\left( \pi,\frac{3\pi}{2} \right)$
D.$\left( \frac{3\pi}{2},2\pi \right)$
答案:
3.C画出$y = |\sin x|$的图象即可解决.借助图象不难看出C符合题意.
032弩3x
4. 函数$y = 10\sin x$与函数$y = x$的图象的交点个数是 (
C
)

A.3
B.6
C.7
D.9
答案:
4.C$y = 10\sin x$的最小正周期是$2\pi$,$y = 10\sin x \in [-10,10]$,$y = x \in [-10,10]$,作出函数$y = 10\sin x$和$y = x$的图象,只要观察$x \in [-10,10]$的图象,由图象知它们有7个交点,故选C.
2010
5. 在$[0,2\pi]$上,满足$\sin x \geqslant \frac{\sqrt{2}}{2}$的$x$的取值范围是(
B
)

A.$\left\lbrack 0,\frac{\pi}{4} \right\rbrack$
B.$\left\lbrack \frac{\pi}{4},\frac{3\pi}{4} \right\rbrack$
C.$\left\lbrack \frac{\pi}{4},\frac{\pi}{2} \right\rbrack$
D.$\left\lbrack \frac{3\pi}{4},\pi \right\rbrack$
答案: 5.B由图象得:$x$的取值范围是$\left[ \frac{\pi}{4},\frac{3\pi}{4} \right]$
6. 已知函数$f(x) = ax^{5} + b\sin x + c$,若$f( - 1) + f(1) = 2$,则$c =$ (
C
)

A.$- 1$
B.$0$
C.$1$
D.$\frac{2}{3}$
答案: 6.C因为$f( - 1) + f(1) = 2$,所以$- a - b\sin 1 + c + a + b\sin 1 + c = 2$,所以$c = 1$.故选C.
7. 函数$y = \sin^{2}x - 2\sin x$的值域是
[-1,3]
.
答案: 7.$[-1,3]$ $y = (\sin x - 1)^2 - 1$,$\because -1 \leq \sin x \leq 1$,$\therefore -2 \leq \sin x - 1 \leq 0$,$\therefore 0 \leq (\sin x - 1)^2 \leq 4$,可得$-1 \leq y \leq 3$.
8. $y = \sqrt{\sin x}$的定义域为
[2kπ,π+2kπ](k∈Z)
,单调递增区间为
[2kπ,2kπ+π/2],k∈Z
.
答案: 8.$\left[ 2k\pi,\pi + 2k\pi \right](k \in \mathbf{Z})$ $\left[ 2k\pi,2k\pi + \frac{\pi}{2} \right],k \in \mathbf{Z}$ $\because \sin x \geq 0$,$\therefore 2k\pi \leq x \leq \pi + 2k\pi,k \in \mathbf{Z}$;当$x \in [0,\pi]$时,$y = \sqrt{\sin x}$在$\left[ 0,\frac{\pi}{2} \right]$上单调递增$\therefore$其递增区间为:$\left[ 2k\pi,2k\pi + \frac{\pi}{2} \right]$,$k \in \mathbf{Z}$.
9. 若函数$f(x) = \sin x + 3|\sin x|$,$x \in [0,2\pi]$的图象与$y = k$仅有两个不同交点,则$k$的取值范围是
(2,4)
.
答案:
9.$(2,4)$ $f(x) = \sin x + 3|\sin x| =$
$\begin{cases} 4\sin x, & 0 \leq x \leq \pi, \\ -2\sin x, & \pi < x \leq 2\pi, \end{cases}$
则$f(x)$的单调递增区间为$\left[ 0,\frac{\pi}{2} \right]$,$\left( \pi,\frac{3\pi}{2} \right)$,单调递减区间为$\left( \frac{\pi}{2},\pi \right],\left[ \frac{3\pi}{2},2\pi \right]$,又$f(0) = f(\pi) = f(2\pi) = 0$,$f\left( \frac{\pi}{2} \right) = 4$,$f\left( \frac{3\pi}{2} \right) = 2$,又函数$f(x)$的图象与$y = k$仅有两个不同交点,则$k$的取值范围是$2 < k < 4$.
2x
故答案为$(2,4)$.
10. 比较大小:
(1)$\sin \frac{\pi}{4}$与$\sin \frac{2\pi}{3}$;
(2)$\sin( - 320^{\circ})$与$\sin 700^{\circ}$.
答案: 10.
(1)$\because \sin\frac{2\pi}{3} = \sin\left( \pi - \frac{\pi}{3} \right) = \sin\frac{\pi}{3}$,$0 < \frac{\pi}{4} < \frac{\pi}{3} < \frac{\pi}{2}$,$y = \sin x$在$\left( 0,\frac{\pi}{2} \right)$上是增加的,$\therefore \sin\frac{\pi}{4} < \sin\frac{\pi}{3}$,即$\sin\frac{\pi}{4} < \sin\frac{2\pi}{3}$
(2)$\because \sin( - 320^{\circ}) = \sin( - 360^{\circ} + 40^{\circ}) = \sin 40^{\circ}$,$\sin 700^{\circ} = \sin(720^{\circ} - 20^{\circ}) = \sin( - 20^{\circ})$.
又函数$y = \sin x$在$\left[ - \frac{\pi}{2},\frac{\pi}{2} \right]$上是增加的,$\therefore \sin 40^{\circ} > \sin( - 20^{\circ})$,即$\sin( - 320^{\circ}) > \sin 700^{\circ}$.
1. 下列关系式中正确的是 (
C
)

A.$\sin 11^{\circ} < \cos 10^{\circ} < \sin 168^{\circ}$
B.$\sin 168^{\circ} < \sin 11^{\circ} < \cos 10^{\circ}$
C.$\sin 11^{\circ} < \sin 168^{\circ} < \cos 10^{\circ}$
D.$\sin 168^{\circ} < \cos 10^{\circ} < \sin 11^{\circ}$
答案: 1.C $\sin 168^{\circ} = \sin(180^{\circ} - 12^{\circ}) = \sin 12^{\circ}$,$\cos 10^{\circ} = \cos(90^{\circ} - 80^{\circ}) = \sin 80^{\circ}$,由于正弦函数$y = \sin x$在区间$[0^{\circ},90^{\circ}]$上为增函数,所以$\sin 11^{\circ} < \sin 12^{\circ} < \sin 80^{\circ}$,即$\sin 11^{\circ} < \sin 168^{\circ} < \cos 10^{\circ}$.故选C.
2. 方程$\sin x = \lg x$的实根个数有 (
C
)

A.1个
B.2个
C.3个
D.无穷多个
答案:
2.C在同一直角坐标系中作函数$y = \sin x$与$y = \lg x$的图象.由图中可以看出两函数图象有三个交点$(x_i,y_i)$,其中$x_i \in (1,10)(i = 1,2,3)$是方程$\sin x = \lg x$的解.
4310
3.(多选)已知函数$f(x) = \sin \omega x(\omega > 0)$在区间$\left\lbrack - \frac{\pi}{3},\frac{\pi}{4} \right\rbrack$上的最大值为1,则$\omega$的值可以为(
ABD
)

A.2
B.4
C.$\frac{3}{2}$
D.$\frac{9}{2}$
答案: 3.ABD 因为$\omega > 0$,当$- \frac{\pi}{3} \leq x \leq \frac{\pi}{4}$时,$- \frac{\pi\omega}{3} \leq \omega x \leq \frac{\pi\omega}{4}$
又因为函数$f(x) = \sin \omega x(\omega > 0)$在区间$\left[ - \frac{\pi}{3},\frac{\pi}{4} \right]$上的最大值为1,
则$- \frac{\pi\omega}{3} \leq 2k\pi + \frac{\pi}{2} \leq \frac{\pi\omega}{4}(k \in \mathbf{Z})$,若$k \geq 0$,则$\omega \geq 8k + 2(k \in \mathbf{N})$,此时,有$\omega \geq 2$,A、B、D合乎条件;若$k < 0$,则$\omega \geq - 6k - \frac{3}{2}$,又因为$k \in \mathbf{Z}$,则$- 6k - \frac{3}{2} \geq \frac{9}{2}$,即$\omega \geq \frac{9}{2}$.D合乎题意.故选ABD.
4. 已知函数$f(x) = f(\pi - x)$,且当$x \in \left( - \frac{\pi}{2},\frac{\pi}{2} \right)$时,$f(x) = x + \sin x$.设$a = f(1)$,$b = f(2)$,$c = f(3)$,则 (
D
)

A.$a < b < c$
B.$b < c < a$
C.$c < b < a$
D.$c < a < b$
答案: 4.D由已知函数$f(x)$在$\left( - \frac{\pi}{2},\frac{\pi}{2} \right)$上是增函数,又因为$\pi - 2 \in \left( - \frac{\pi}{2},\frac{\pi}{2} \right)$,$\pi - 3 \in \left( - \frac{\pi}{2},\frac{\pi}{2} \right)$,$\pi - 3 < \pi - 2$,所以$f(\pi - 3) < f(1) < f(\pi - 2)$,即$f(3) < f(1) < f(2)$,$c < a < b$.故选D.

查看更多完整答案,请扫码查看

关闭