2025年成才之路高中新课程学习指导高中数学必修第二册北师大版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年成才之路高中新课程学习指导高中数学必修第二册北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
1. 将函数$y = \sin x$的图象上所有的点向右平行移动$\frac{\pi}{10}$个单位长度,再把所得各点的横坐标伸长到原来的$2$倍(纵坐标不变),所得图象的函数解析式是 (
A.$y = \sin(2x - \frac{\pi}{10})$
B.$y = \sin(2x - \frac{\pi}{5})$
C.$y = \sin(\frac{1}{2}x - \frac{\pi}{10})$
D.$y = \sin(\frac{1}{2}x - \frac{\pi}{20})$
C
)A.$y = \sin(2x - \frac{\pi}{10})$
B.$y = \sin(2x - \frac{\pi}{5})$
C.$y = \sin(\frac{1}{2}x - \frac{\pi}{10})$
D.$y = \sin(\frac{1}{2}x - \frac{\pi}{20})$
答案:
1.C 将函数$y = \sin x$的图象上所有的点向右平行移动$\frac{\pi}{10}$个单位长度,所得函数图象的解析式为$y = \sin(x - \frac{\pi}{10})$,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是$y = \sin(\frac{1}{2}x - \frac{\pi}{10})$
2. 函数$y = \sin \omega x(\omega > 0)$在区间$[0,1]$上至少出现$50$个最小值,则$\omega$的最小值是 (
A.$98\pi$
B.$98.5\pi$
C.$99.5\pi$
D.$100\pi$
C
)A.$98\pi$
B.$98.5\pi$
C.$99.5\pi$
D.$100\pi$
答案:
2.C 使$y = \sin \omega x(\omega > 0)$在区间$[0,1]$上至少出现50个最小值,则$(49 + \frac{3}{4})T = (49 + \frac{3}{4}) · \frac{2\pi}{\omega} \leq 1$
解得$\omega \geq \frac{199}{2}\pi$
故$\omega$的最小值为$99.5\pi$
解得$\omega \geq \frac{199}{2}\pi$
故$\omega$的最小值为$99.5\pi$
3. (多选)关于$x$的函数$f(x) = \sin(x + \varphi)$的以下说法,不正确的是 (
A.对任意的$\varphi,f(x)$都是非奇非偶函数
B.存在$\varphi$,使$f(x)$是偶函数
C.存在$\varphi$,使$f(x)$是奇函数
D.对任意的$\varphi,f(x)$都不是偶函数
AD
)A.对任意的$\varphi,f(x)$都是非奇非偶函数
B.存在$\varphi$,使$f(x)$是偶函数
C.存在$\varphi$,使$f(x)$是奇函数
D.对任意的$\varphi,f(x)$都不是偶函数
答案:
3.AD $\varphi = 0$时,$f(x) = \sin x$是奇函数,所以A错误,C正确;$\varphi = \frac{\pi}{2}$时,$f(x) = \sin(x + \frac{\pi}{2}) = \cos x$是偶函数,所以B正确,D错误
4. (多选)关于函数$f(x) = \sin(2x + \frac{\pi}{3}) + 1,x \in \mathbf{R}$,下列命题正确的是 (
A.函数$y = f(x)$的图象关于点$(-\frac{\pi}{6},1)$对称
B.若$f(x_1) = f(x_2) = 1$,则$x_1 - x_2 = k\pi(k \in \mathbf{Z})$
C.函数$y = f(x)$的表达式可改写为$y = \cos(2x - \frac{\pi}{6}) + 1$
D.$y = f(x)$的图象向右平移$\frac{5\pi}{12}$个单位长度后所得图象关于$y$轴对称
ACD
)A.函数$y = f(x)$的图象关于点$(-\frac{\pi}{6},1)$对称
B.若$f(x_1) = f(x_2) = 1$,则$x_1 - x_2 = k\pi(k \in \mathbf{Z})$
C.函数$y = f(x)$的表达式可改写为$y = \cos(2x - \frac{\pi}{6}) + 1$
D.$y = f(x)$的图象向右平移$\frac{5\pi}{12}$个单位长度后所得图象关于$y$轴对称
答案:
4.ACD 对于A,将$x = - \frac{\pi}{6}$代入可得$\sin[2 × (- \frac{\pi}{6}) + \frac{\pi}{3}] = \sin(- \frac{\pi}{3} + \frac{\pi}{3}) = 0$,$f(- \frac{\pi}{6}) = 1$,所以函数$y = f(x)$的图象关于点$(- \frac{\pi}{6},1)$对称;对于B,由$f(x_1) = f(x_2) = 1$可得$\sin(2x_1 + \frac{\pi}{3}) = \sin(2x_2 + \frac{\pi}{3}) = 0$,即$x_1$,$x_2$是函数$y = \sin(2x + \frac{\pi}{3})$的零点,所以$x_1$,$x_2$相差半周期的整数倍,即$x_1 - x_2 = k · \frac{T}{2} = \frac{k\pi}{2}(k \in \mathbf{Z})$,所以B错误;对于C,利用诱导公式可得$\sin(2x + \frac{\pi}{3}) + 1 = \cos[\frac{\pi}{2} - (2x + \frac{\pi}{3})] + 1 = \cos(\frac{\pi}{6} - 2x) + 1 = \cos(2x - \frac{\pi}{6}) + 1$,所以函数$y = f(x)$的表达式可改写为$y = \cos(2x - \frac{\pi}{6}) + 1$,故C正确;对于D,$y = f(x)$的图象向右平移$\frac{5\pi}{12}$个单位长度后可得$f_1(x) = \sin[2(x - \frac{5\pi}{12}) + \frac{\pi}{3}] + 1 = \sin(2x - \frac{5\pi}{6} + \frac{\pi}{3}) + 1 = \sin(2x - \frac{\pi}{2}) + 1 = - \cos2x + 1$为偶函数,即所得图象关于$y$轴对称,所以D正确。故选ACD。
5. 已知函数$y = \sin(2x + \varphi)(-\frac{\pi}{2} < \varphi < \frac{\pi}{2})$的图象关于直线$x = \frac{\pi}{3}$对称,则$\varphi$的值为
$-\frac{\pi}{6}$
.
答案:
5.$-\frac{\pi}{6}$ 函数的图象关于直线$x = \frac{\pi}{3}$对称,所以$2 × \frac{\pi}{3} + \varphi = k\pi + \frac{\pi}{2}$,$k \in \mathbf{Z}$
即$\varphi = k\pi - \frac{\pi}{6}$,又因为$-\frac{\pi}{2} < \varphi < \frac{\pi}{2}$
所以当$k = 0$时,$\varphi = - \frac{\pi}{6}$
即$\varphi = k\pi - \frac{\pi}{6}$,又因为$-\frac{\pi}{2} < \varphi < \frac{\pi}{2}$
所以当$k = 0$时,$\varphi = - \frac{\pi}{6}$
6. 函数$y = \sin(2x - \frac{\pi}{3})$的图象可由函数$y = \sin x$的图象作两次变换得到,第一次变换是针对函数$y = \sin x$的图象而言的,第二次变换是针对第一次变换所得图象而言的.现给出下列四个变换:①图象上所有点向右平移$\frac{\pi}{6}$个单位;②图象上所有点向右平移$\frac{\pi}{3}$个单位;③图象上所有点的横坐标变为原来的$2$倍(纵坐标不变);④图象上所有点的横坐标变为原来的$\frac{1}{2}$(纵坐标不变).请按顺序写出两次变换的代表序号:
④①或②④
.
答案:
6.④①或②④
7. 已知函数$f(x) = \sin(2x - \frac{\pi}{6})$.

(1)用“五点法”作出函数$f(x)$在$[0,\pi]$上的图象;
(2)解不等式$f(x) \geq \frac{1}{2}$.
(1)用“五点法”作出函数$f(x)$在$[0,\pi]$上的图象;
(2)解不等式$f(x) \geq \frac{1}{2}$.
答案:
7.
(1) 列表
$2x - \frac{\pi}{6}$ $0$ $\frac{\pi}{2}$ $\pi$ $\frac{3\pi}{2}$ $2\pi$
$x$ $\frac{\pi}{12}$ $\frac{\pi}{3}$ $\frac{7\pi}{12}$ $\frac{5\pi}{6}$ $\frac{13\pi}{12}$
$f(x)$ $0$ $1$ $0$ $-1$ $0$
又当$x = 0$时,$f(0) = - \frac{1}{2}$,当$x = \pi$时,$f(\pi) = - \frac{1}{2}$
描点作图,如图所示:
(2) 因为$f(x) = \sin(2x - \frac{\pi}{6}) \geq \frac{1}{2}$,所以$\frac{\pi}{6} + 2k\pi \leq 2x - \frac{\pi}{6} \leq \frac{5\pi}{6} + 2k\pi$,$k \in \mathbf{Z}$,解得$\frac{\pi}{6} + k\pi \leq x \leq \frac{\pi}{2} + k\pi$,$k \in \mathbf{Z}$,故不等式的解集为$\{x|\frac{\pi}{6} + k\pi \leq x \leq \frac{\pi}{2} + k\pi,k \in \mathbf{Z}\}$
7.
(1) 列表
$2x - \frac{\pi}{6}$ $0$ $\frac{\pi}{2}$ $\pi$ $\frac{3\pi}{2}$ $2\pi$
$x$ $\frac{\pi}{12}$ $\frac{\pi}{3}$ $\frac{7\pi}{12}$ $\frac{5\pi}{6}$ $\frac{13\pi}{12}$
$f(x)$ $0$ $1$ $0$ $-1$ $0$
又当$x = 0$时,$f(0) = - \frac{1}{2}$,当$x = \pi$时,$f(\pi) = - \frac{1}{2}$
描点作图,如图所示:
(2) 因为$f(x) = \sin(2x - \frac{\pi}{6}) \geq \frac{1}{2}$,所以$\frac{\pi}{6} + 2k\pi \leq 2x - \frac{\pi}{6} \leq \frac{5\pi}{6} + 2k\pi$,$k \in \mathbf{Z}$,解得$\frac{\pi}{6} + k\pi \leq x \leq \frac{\pi}{2} + k\pi$,$k \in \mathbf{Z}$,故不等式的解集为$\{x|\frac{\pi}{6} + k\pi \leq x \leq \frac{\pi}{2} + k\pi,k \in \mathbf{Z}\}$
8. 将函数$f(x) = \sin(\omega x + \varphi)(\omega > 0,-\frac{\pi}{2} \leq \varphi < \frac{\pi}{2})$图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移$\frac{\pi}{6}$个单位长度得到$y = \sin x$的图象.
(1)求函数$f(x)$的解析式;
(2)当$x \in [0,3\pi]$时,方程$f(x) = m$有唯一实数根,求$m$的取值范围.
(1)求函数$f(x)$的解析式;
(2)当$x \in [0,3\pi]$时,方程$f(x) = m$有唯一实数根,求$m$的取值范围.
答案:
8.
(1) 将$y = \sin x$的图象向左平移$\frac{\pi}{6}$个单位长度可得$y = \sin(x + \frac{\pi}{6})$的图象,保持纵坐标不变,横坐标变为原来的2倍,可得$y = \sin(\frac{1}{2}x + \frac{\pi}{6})$的图象,故$f(x) = \sin(\frac{1}{2}x + \frac{\pi}{6})$
(2) 令$2k\pi + \frac{\pi}{2} \leq \frac{1}{2}x + \frac{\pi}{6} \leq 2k\pi + \frac{3\pi}{2}(k \in \mathbf{Z})$,则$4k\pi + \frac{2\pi}{3} \leq x \leq 4k\pi + \frac{8\pi}{3}(k \in \mathbf{Z})$,又$x \in [0,3\pi]$,所以$x \in [0,\frac{2\pi}{3})$,$f(x)$单调递增,$x \in [\frac{2\pi}{3},\frac{8\pi}{3}]$,$f(x)$单调递减,$x \in (\frac{8\pi}{3},3\pi]$,$f(x)$单调递增,所以$f(x)_{\max} = 1$,$f(x)_{\min} = - 1$,当$x = 0$时,$y = \frac{1}{2}$,当$x = 3\pi$时,$y = - \frac{\sqrt{3}}{2}$
故使方程$f(x) = m$有唯一实数根的$m$的取值范围为$m \in (- \frac{\sqrt{3}}{2},\frac{1}{2}) \cup \{-1,1\}$
(1) 将$y = \sin x$的图象向左平移$\frac{\pi}{6}$个单位长度可得$y = \sin(x + \frac{\pi}{6})$的图象,保持纵坐标不变,横坐标变为原来的2倍,可得$y = \sin(\frac{1}{2}x + \frac{\pi}{6})$的图象,故$f(x) = \sin(\frac{1}{2}x + \frac{\pi}{6})$
(2) 令$2k\pi + \frac{\pi}{2} \leq \frac{1}{2}x + \frac{\pi}{6} \leq 2k\pi + \frac{3\pi}{2}(k \in \mathbf{Z})$,则$4k\pi + \frac{2\pi}{3} \leq x \leq 4k\pi + \frac{8\pi}{3}(k \in \mathbf{Z})$,又$x \in [0,3\pi]$,所以$x \in [0,\frac{2\pi}{3})$,$f(x)$单调递增,$x \in [\frac{2\pi}{3},\frac{8\pi}{3}]$,$f(x)$单调递减,$x \in (\frac{8\pi}{3},3\pi]$,$f(x)$单调递增,所以$f(x)_{\max} = 1$,$f(x)_{\min} = - 1$,当$x = 0$时,$y = \frac{1}{2}$,当$x = 3\pi$时,$y = - \frac{\sqrt{3}}{2}$
故使方程$f(x) = m$有唯一实数根的$m$的取值范围为$m \in (- \frac{\sqrt{3}}{2},\frac{1}{2}) \cup \{-1,1\}$
查看更多完整答案,请扫码查看