2025年小题狂做高中数学必修第一册苏教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年小题狂做高中数学必修第一册苏教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



1. 计算:tan 210°+sin 300°=
(
A
)

A.$-\frac{\sqrt{3}}{6}$
B.$\frac{\sqrt{3}}{6}$
C.$\frac{5\sqrt{3}}{6}$
D.$-\frac{5\sqrt{3}}{6}$
答案: 1. A $\tan 210° + \sin 300° = \tan(180° + 30°) + \sin(360° - 60°) = \tan 30° - \sin 60° = \frac{\sqrt{3}}{3} - \frac{\sqrt{3}}{2} = -\frac{\sqrt{3}}{6}$.
2. 已知$x \in \mathbf{R}$,则“$x = 2k\pi + \frac{\pi}{2}(k \in \mathbf{Z})$”是“$\cos x = 0$”的
(
A
)

A.充分且不必要条件
B.必要且不充分条件
C.充要条件
D.既不充分又不必要条件
答案: 2. A 判断充分性:当 $x = 2k\pi + \frac{\pi}{2} (k \in \mathbf{Z})$ 时,根据余弦函数的性质知 $\cos(2k\pi + \frac{\pi}{2}) = 0, k \in \mathbf{Z}$,所以由 $x = 2k\pi + \frac{\pi}{2} (k \in \mathbf{Z})$ 能推出 $\cos x = 0$,充分性成立.判断必要性:当 $\cos x = 0$ 时,$x = k\pi + \frac{\pi}{2} (k \in \mathbf{Z})$,则满足 $\cos x = 0$ 的 $x$ 不只是 $x = 2k\pi + \frac{\pi}{2} (k \in \mathbf{Z})$,还有 $x = (2k + 1)\pi + \frac{\pi}{2} (k \in \mathbf{Z})$,所以由 $\cos x = 0$ 不能推出 $x = 2k\pi + \frac{\pi}{2} (k \in \mathbf{Z})$,必要性不成立.综上,“$x = 2k\pi + \frac{\pi}{2} (k \in \mathbf{Z})$”是“$\cos x = 0$”的充分且不必要条件.
3. 已知$A(\sin 23^{\circ}, - \cos 23^{\circ})$是角$\alpha$终边上一点,若$0^{\circ} < \alpha < 360^{\circ}$,则$\alpha =$
(
C
)

A.113°
B.157°
C.293°
D.337°
答案: 3. C 由 $\sin 23° > 0, -\cos 23° < 0$,得点 $A$ 在第四象限.由 $\tan \alpha = \frac{\cos 23°}{\sin 23°} = \frac{1}{\tan 23°} = -\tan 67° = \tan 293°$,故 $\alpha = 293°$.
4. 已知$\cos(\frac{\pi}{6} - \alpha) = \frac{\sqrt{3}}{3}$,则$\cos(\frac{5\pi}{6} + \alpha) - \sin^{2}(\alpha - \frac{\pi}{6}) =$
(
B
)

A.$\frac{2 + \sqrt{3}}{3}$
B.$-\frac{2 + \sqrt{3}}{3}$
C.$\frac{2 - \sqrt{3}}{3}$
D.$\frac{- 2 + \sqrt{3}}{3}$
答案: 4. B 由条件得 $\cos(\frac{5\pi}{6} + \alpha) = \cos[\pi - (\frac{\pi}{6} - \alpha)] = -\cos(\frac{\pi}{6} - \alpha) = -\frac{\sqrt{3}}{3}$,$\sin^2(\alpha - \frac{\pi}{6}) = \sin^2(\frac{\pi}{6} - \alpha) = 1 - \cos^2(\frac{\pi}{6} - \alpha) = 1 - (-\frac{\sqrt{3}}{3})^2 = \frac{2}{3}$,所以原式 $= -\frac{\sqrt{3}}{3} - \frac{2}{3} = -\frac{2 + \sqrt{3}}{3}$.
方法总结 研究三角函数问题时,角是第一位,为此,首先要判断所研究的角之间的关系,从而通过应用相关公式转化为相同的角来处理.
5. 已知$f(x) = a\tan\frac{x}{2} - b\sin x + 4$(其中$a,b$为实数,$ab \neq 0$),若$f(3) = 5$,则$f(1022\pi - 3)$的值为
(
C
)

A.1
B.2
C.3
D.4
答案: 5. C 因为 $f(x) = a\tan\frac{x}{2} - b\sin x + 4$,$f(3) = 5$,所以 $f(3) = a\tan\frac{3}{2} - b\sin 3 + 4 = 5$,所以 $a\tan\frac{3}{2} - b\sin 3 = 1$,所以 $f(1022\pi - 3) = a\tan\frac{1022\pi - 3}{2} - b\sin(1022\pi - 3) + 4 = a\tan(511\pi - \frac{3}{2}) + b\sin 3 + 4 = -a\tan\frac{3}{2} + b\sin 3 + 4 = -1 + 4 = 3$.
6. 已知$\frac{\sin(2\pi + \theta)\tan(\pi + \theta)\tan(3\pi - \theta)}{\sin(\pi - \theta)\tan( - \pi - \theta)} = 1$,则$\sin^{2}\theta + 3\sin\theta\cos\theta + 2\cos^{2}\theta$的值是
(
A
)

A.3
B.2
C.1
D.4
答案: 6. A 由已知得 $\frac{\sin\theta\tan\theta(-\tan\theta)}{\sin\theta(-\tan\theta)} = 1$,即 $\tan\theta = 1$,于是 $\sin^2\theta + 3\sin\theta\cos\theta + 2\cos^2\theta = 1 + \frac{3\sin\theta\cos\theta + \cos^2\theta}{\sin^2\theta + \cos^2\theta} = 1 + \frac{3\tan\theta + 1}{\tan^2\theta + 1} = 3$.
7. 在$\bigtriangleup ABC$中,下列结论正确的是
(
BC
)

A.$\sin(A + B) + \sin C = 0$
B.$\cos(A + B) + \cos C = 0$
C.$\tan(A + B) + \tan C = 0$
D.$\sin(A + B) + \sin C = 1$
答案: 7. BC $\sin(A + B) + \sin C = \sin(\pi - C) + \sin C = 2\sin C$,$\cos(A + B) + \cos C = \cos(\pi - C) + \cos C = -\cos C + \cos C = 0$,$\tan(A + B) + \tan C = \tan(\pi - C) + \tan C = -\tan C + \tan C = 0$,所以 B,C 正确,A,D 错误.
8. 下列化简正确的是
(
ABD
)

A.$\tan(\pi + 1) = \tan 1$
B.$\frac{\sin( - \alpha)}{\tan(180^{\circ} - \alpha)} = \cos\alpha$
C.$\frac{\sin(\pi - \alpha)}{\cos(\pi + \alpha)} = \tan\alpha$
D.$\frac{\cos(\pi - \alpha)\tan( - \pi - \alpha)}{\sin(2\pi - \alpha)} = - 1$
答案: 8. ABD 对于 A,根据三角函数的诱导公式,可得 $\tan(\pi + 1) = \tan 1$,所以 A 正确;对于 B,由 $\frac{\sin(-\alpha)}{\tan(180° - \alpha)} = \frac{-\sin\alpha}{-\tan\alpha} = \cos\alpha$,所以 B 正确;对于 C,由 $\frac{\sin(\pi - \alpha)}{\cos(\pi + \alpha)} = \frac{\sin\alpha}{-\cos\alpha} = -\tan\alpha$,所以 C 错误;对于 D,由 $\frac{\cos(\pi - \alpha)\tan(-\pi - \alpha)}{\sin(2\pi - \alpha)} = \frac{(-\cos\alpha)(-\tan\alpha)}{-\sin\alpha} = -1$,所以 D 正确.
9. 已知$A = \frac{\sin(k\pi + \alpha)}{\sin\alpha} + \frac{\cos(k\pi + \alpha)}{\cos\alpha}(k \in \mathbf{Z})$,则 A 的值可能是
(
CD
)

A.-1
B.1
C.-2
D.2
答案: 9. CD 当 $k$ 为偶数时,$A = \frac{\sin\alpha}{\sin\alpha} + \frac{\cos\alpha}{\cos\alpha} = 2$;当 $k$ 为奇数时,$A = \frac{-\sin\alpha}{\sin\alpha} + \frac{-\cos\alpha}{\cos\alpha} = -2$.
10. 设代数式$a\sin(\pi x + \alpha) + b\cos(\pi x + \beta) + 5,a,b \in \mathbf{R},\alpha,\beta \in \mathbf{R}$,当$x = 2024$时,代数式的值为 2,则当$x = 2025$时,代数式的值为
8
.
答案: 10. 8 设 $A = a\sin(\pi × 2024 + \alpha) + b\cos(\pi × 2024 + \beta) + 5 = a\sin\alpha + b\cos\beta + 5 = 2$,所以 $a\sin\alpha + b\cos\beta = -3$,则 $a\sin(2025\pi + \alpha) + b\cos(2025\pi + \beta) + 5 = -a\sin\alpha - b\cos\beta + 5 = -(-3) + 5 = 8$.

查看更多完整答案,请扫码查看

关闭