25. (10分)如图,在$\triangle ABC$中,$CD$是角平分线,$DE$平分$\angle CDB$,交$BC$于点$E$,且$DE// AC$.
(1)求证:$CD^2 = CA\cdot CE$;
(2)若$CE = 2BE = 2$,求$CD$的长.

(1)求证:$CD^2 = CA\cdot CE$;
(2)若$CE = 2BE = 2$,求$CD$的长.
答案:
(1)证明:$ \because C D $ 是角平分线,$ \therefore \angle A C D = \angle D C E $。$ \because D E $ 平分 $ \angle C D B $,$ \therefore \angle C D E = \angle E D B $。$ \because D E // A C $,$ \therefore \angle A = \angle E D B $,$ \therefore \angle A = \angle C D E $,$ \therefore \triangle A C D \backsim \triangle D C E $,$ \therefore \frac { C A } { C D } = \frac { C D } { C E } $,$ \therefore C D ^ { 2 } = C A \cdot C E $。(2)解:$ \because C E = 2 B E = 2 $,$ \therefore B E = 1 $,$ \therefore B C = B E + C E = 3 $。由(1)知 $ \angle A C D = \angle B C D $。$ \because D E // A C $,$ \therefore \angle A C D = \angle C D E $,$ \therefore \angle B C D = \angle C D E $,$ \therefore D E = C E = 2 $。$ \because D E // A C $,$ \therefore \triangle B D E \backsim \triangle B A C $,$ \therefore \frac { D E } { A C } = \frac { B E } { B C } = \frac { 1 } { 3 } $,$ \therefore C A = 3 D E = 6 $。由(1)知 $ C D ^ { 2 } = C A \cdot C E $,$ \therefore C D ^ { 2 } = 6 \times 2 = 12 $,$ \therefore C D = 2 \sqrt { 3 } $。
26. (12分)在$\triangle ABC$中,$\angle ACB = 90^{\circ}$,$BE$是边$AC$上的中线,点$D$在射线$BC$上.
【猜想】如图1,若点$D$在边$BC$上,$BD:BC = 2:3$,$AD$与$BE$相交于点$P$,过点$A$作$AF// BC$,交$BE$的延长线于点$F$,则$\frac{AP}{DP}$的值为________;
【探究】如图2,若点$D$在$BC$的延长线上,$AD$与$BE$的延长线交于点$P$,$CD:BC = 1:2$,求$\frac{AP}{DP}$的值;
【应用】在【探究】的条件下,若$CD = 2$,$AC = 6$,求$BP$的长.


【猜想】如图1,若点$D$在边$BC$上,$BD:BC = 2:3$,$AD$与$BE$相交于点$P$,过点$A$作$AF// BC$,交$BE$的延长线于点$F$,则$\frac{AP}{DP}$的值为________;
【探究】如图2,若点$D$在$BC$的延长线上,$AD$与$BE$的延长线交于点$P$,$CD:BC = 1:2$,求$\frac{AP}{DP}$的值;
【应用】在【探究】的条件下,若$CD = 2$,$AC = 6$,求$BP$的长.
答案:
解:【猜想】$ \frac { 3 } { 2 } $ 【探究】过点 $ A $ 作 $ A F // B C $,交 $ B E $ 的延长线于点 $ F $。$ \because B E $ 是边 $ A C $ 上的中线,$ \therefore \frac { A E } { C E } = 1 $。$ \because C D : B C = 1 : 2 $,$ \therefore $ 设 $ C D = k $,则 $ B C = 2 k $,$ \therefore B D = C D + B C = 3 k $。$ \because A F // B C $,$ \therefore \triangle A E F \backsim \triangle C E B $,$ \therefore \frac { A F } { C B } = \frac { A E } { C E } = 1 $,即 $ A F = B C = 2 k $。$ \because A F // B D $,$ \therefore \triangle A P F \backsim \triangle D P B $,$ \therefore \frac { A P } { D P } = \frac { A F } { D B } = \frac { 2 k } { 3 k } = \frac { 2 } { 3 } $。【应用】$ \because B E $ 是边 $ A C $ 上的中线,$ C D = 2 $,$ A C = 6 $,$ C D : B C = 1 : 2 $,$ \therefore C E = \frac { 1 } { 2 } A C = 3 $,$ B C = 2 C D = 4 $。在 $ \mathrm { Rt } \triangle B C E $ 中,$ B E = \sqrt { C E ^ { 2 } + B C ^ { 2 } } = 5 $。易得 $ B F = 2 B E = 10 $。由【探究】知 $ \triangle A P F \backsim \triangle D P B $,$ \therefore \frac { P F } { P B } = \frac { A P } { D P } = \frac { 2 } { 3 } $,$ \therefore B P = \frac { 3 } { 5 } B F = \frac { 3 } { 5 } \times 10 = 6 $。
查看更多完整答案,请扫码查看