知识梳理
1. 如图①,在边长为$a$的大正方形纸片上剪去一个边长为$b(b<a)$的小正方形,则阴影部分的面积为______;也可以由图①剪拼成图②,得到一个长为______、宽为______的长方形,面积为______,可得______=______.
2. 平方差公式:$(a+b)(a-b)=$______.
1. 如图①,在边长为$a$的大正方形纸片上剪去一个边长为$b(b<a)$的小正方形,则阴影部分的面积为______;也可以由图①剪拼成图②,得到一个长为______、宽为______的长方形,面积为______,可得______=______.
2. 平方差公式:$(a+b)(a-b)=$______.
答案:
1.$a^{2}-b^{2}$;$a+b$;$a-b$;$(a+b)(a-b)$;$a^{2}-b^{2}$;$(a+b)(a-b)$
2.$a^{2}-b^{2}$
2.$a^{2}-b^{2}$
1. 下列计算中,正确的是( )
A. $(m-2)(m+2)=m^{2}-2$
B. $(x-6)(x+6)=x^{2}+36$
C. $(x-y)(x+y)=x^{2}-y^{2}$
D. $(x+y)(x+y)=x^{2}+y^{2}$
A. $(m-2)(m+2)=m^{2}-2$
B. $(x-6)(x+6)=x^{2}+36$
C. $(x-y)(x+y)=x^{2}-y^{2}$
D. $(x+y)(x+y)=x^{2}+y^{2}$
答案:
C
解析:平方差公式$(a+b)(a-b)=a^{2}-b^{2}$,C选项正确;A应为$m^{2}-4$,B应为$x^{2}-36$,D是完全平方$x^{2}+2xy+y^{2}$.
解析:平方差公式$(a+b)(a-b)=a^{2}-b^{2}$,C选项正确;A应为$m^{2}-4$,B应为$x^{2}-36$,D是完全平方$x^{2}+2xy+y^{2}$.
2. 下列各式中不能用平方差公式计算的是( )
A. $(x-y)(-x+y)$
B. $(-x+y)(-x-y)$
C. $(-x-y)(x-y)$
D. $(x+y)(-x+y)$
A. $(x-y)(-x+y)$
B. $(-x+y)(-x-y)$
C. $(-x-y)(x-y)$
D. $(x+y)(-x+y)$
答案:
A
解析:A选项$(x-y)(-x+y)=-(x-y)^{2}$,是完全平方,不能用平方差公式;B、C、D均可化为$(a+b)(a-b)$形式.
解析:A选项$(x-y)(-x+y)=-(x-y)^{2}$,是完全平方,不能用平方差公式;B、C、D均可化为$(a+b)(a-b)$形式.
3. (1)$(-2b-5)(2b-5)=$______;
(2)$(2a-b)$______$=b^{2}-4a^{2}$.
(2)$(2a-b)$______$=b^{2}-4a^{2}$.
答案:
(1)$25-4b^{2}$;
(2)$(-2a-b)$
解析:
(1)$(-5-2b)(-5+2b)=(-5)^{2}-(2b)^{2}=25-4b^{2}$;
(2)$b^{2}-4a^{2}=-(4a^{2}-b^{2})=-(2a-b)(2a+b)=(2a-b)(-2a-b)$.
(1)$25-4b^{2}$;
(2)$(-2a-b)$
解析:
(1)$(-5-2b)(-5+2b)=(-5)^{2}-(2b)^{2}=25-4b^{2}$;
(2)$b^{2}-4a^{2}=-(4a^{2}-b^{2})=-(2a-b)(2a+b)=(2a-b)(-2a-b)$.
4. 有三个连续的自然数,中间一个是$x$,则它们的积是______.
答案:
$x^{3}-x$
解析:三个数为$x-1$,$x$,$x+1$,积为$(x-1)x(x+1)=x(x^{2}-1)=x^{3}-x$.
解析:三个数为$x-1$,$x$,$x+1$,积为$(x-1)x(x+1)=x(x^{2}-1)=x^{3}-x$.
5. 计算:
(1)$\left(\frac{3}{4}x+\frac{2}{5}y\right)\left(-\frac{2}{5}y+\frac{3}{4}x\right)$;
(2)$(-3x^{2}+y^{2})(y^{2}+3x^{2})$;
(3)$(x+2)(x-2)(x^{2}+4)$;
(4)$(a^{n+1}-5b^{n-5})(a^{n+1}+5b^{n-5})$.
(1)$\left(\frac{3}{4}x+\frac{2}{5}y\right)\left(-\frac{2}{5}y+\frac{3}{4}x\right)$;
(2)$(-3x^{2}+y^{2})(y^{2}+3x^{2})$;
(3)$(x+2)(x-2)(x^{2}+4)$;
(4)$(a^{n+1}-5b^{n-5})(a^{n+1}+5b^{n-5})$.
答案:
(1)$\frac{9}{16}x^{2}-\frac{4}{25}y^{2}$;
(2)$y^{4}-9x^{4}$;
(3)$x^{4}-16$;
(4)$a^{2n+2}-25b^{2n-10}$
解析:
(1)$\left(\frac{3}{4}x\right)^{2}-\left(\frac{2}{5}y\right)^{2}=\frac{9}{16}x^{2}-\frac{4}{25}y^{2}$;
(2)$(y^{2})^{2}-(3x^{2})^{2}=y^{4}-9x^{4}$;
(3)$(x^{2}-4)(x^{2}+4)=x^{4}-16$;
(4)$(a^{n+1})^{2}-(5b^{n-5})^{2}=a^{2n+2}-25b^{2n-10}$.
(1)$\frac{9}{16}x^{2}-\frac{4}{25}y^{2}$;
(2)$y^{4}-9x^{4}$;
(3)$x^{4}-16$;
(4)$a^{2n+2}-25b^{2n-10}$
解析:
(1)$\left(\frac{3}{4}x\right)^{2}-\left(\frac{2}{5}y\right)^{2}=\frac{9}{16}x^{2}-\frac{4}{25}y^{2}$;
(2)$(y^{2})^{2}-(3x^{2})^{2}=y^{4}-9x^{4}$;
(3)$(x^{2}-4)(x^{2}+4)=x^{4}-16$;
(4)$(a^{n+1})^{2}-(5b^{n-5})^{2}=a^{2n+2}-25b^{2n-10}$.
6. 用平方差公式计算:
(1)$59.9× 60.1$;
(2)$20\frac{3}{5}× 19\frac{2}{5}$.
(1)$59.9× 60.1$;
(2)$20\frac{3}{5}× 19\frac{2}{5}$.
答案:
(1)3599.99;
(2)$399\frac{16}{25}$
解析:
(1)$(60-0.1)(60+0.1)=60^{2}-0.1^{2}=3600-0.01=3599.99$;
(2)$\left(20+\frac{3}{5}\right)\left(20-\frac{3}{5}\right)=20^{2}-\left(\frac{3}{5}\right)^{2}=400-\frac{9}{25}=399\frac{16}{25}$.
(1)3599.99;
(2)$399\frac{16}{25}$
解析:
(1)$(60-0.1)(60+0.1)=60^{2}-0.1^{2}=3600-0.01=3599.99$;
(2)$\left(20+\frac{3}{5}\right)\left(20-\frac{3}{5}\right)=20^{2}-\left(\frac{3}{5}\right)^{2}=400-\frac{9}{25}=399\frac{16}{25}$.
查看更多完整答案,请扫码查看