2025年通城学典非常课课通九年级数学下册苏科版江苏专版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年通城学典非常课课通九年级数学下册苏科版江苏专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
1.(2024·姜堰期末)若$\sin\alpha>\frac{\sqrt{2}}{2}$,则锐角$\alpha$的大小可能是( )
A. $35^{\circ}$
B. $40^{\circ}$
C. $45^{\circ}$
D. $65^{\circ}$
A. $35^{\circ}$
B. $40^{\circ}$
C. $45^{\circ}$
D. $65^{\circ}$
答案:
D
2.(2023·宁强期末)按如图所示的运算程序,能使输出$y$的值为$\frac{1}{2}$的是( )

A. $\alpha = 60^{\circ},\beta = 45^{\circ}$
B. $\alpha = 30^{\circ},\beta = 45^{\circ}$
C. $\alpha = 30^{\circ},\beta = 30^{\circ}$
D. $\alpha = 45^{\circ},\beta = 30^{\circ}$
A. $\alpha = 60^{\circ},\beta = 45^{\circ}$
B. $\alpha = 30^{\circ},\beta = 45^{\circ}$
C. $\alpha = 30^{\circ},\beta = 30^{\circ}$
D. $\alpha = 45^{\circ},\beta = 30^{\circ}$
答案:
C
3.(1)如图①,在$\odot O$中,四边形$OABC$为菱形,点$D$在优弧$AC$上,则$\sin\frac{\angle ADC}{2}=$_______;
(2)(赤峰中考改编)如图②,点$C、D$在以$AB$为直径的半圆$O$上,且$\angle ADC = 120^{\circ}$,$E$是$\overset{\frown}{AD}$上任意一点,连接$BE、CE、BC$,则$\tan\angle BEC$的值为_______.

(2)(赤峰中考改编)如图②,点$C、D$在以$AB$为直径的半圆$O$上,且$\angle ADC = 120^{\circ}$,$E$是$\overset{\frown}{AD}$上任意一点,连接$BE、CE、BC$,则$\tan\angle BEC$的值为_______.
答案:
(1)$\frac{1}{2}$
(2)$\frac{\sqrt{3}}{3}$
(1)$\frac{1}{2}$
(2)$\frac{\sqrt{3}}{3}$
4.(2024·蓬莱期末)在$\triangle ABC$中,$\angle A、\angle B$均为锐角,且有$|\tan A - \sqrt{3}|+(\cos B - \frac{1}{2})^2 = 0$,则$\triangle ABC$是__________.
答案:
等边三角形
5.(2024·昌黎期中)如图,在矩形$ABCD$中,$E$是$CD$的中点,$F$是$BC$上一点,且$FC = 2BF$,连接$AE、EF$.若$AB = 2$,$AD = 3$,则$\cos\angle AEF$的值为_______.

答案:
$\frac{\sqrt{2}}{2}$
6. 如图,点$A$在半径为$2$的$\odot O$内,$OA = 1$,$P$为$\odot O$上一动点,当$\angle OPA$最大时,$\angle OPA$的大小为________,$PA$的长为________.

答案:
$30^{\circ}$ $\sqrt{3}$
7.(2024·武城期末)定义一种运算:$\sin(\alpha + \beta)=\sin\alpha\cos\beta + \cos\alpha\sin\beta$,$\sin(\alpha - \beta)=\sin\alpha\cos\beta - \cos\alpha\sin\beta$.例如:当$\alpha = 45^{\circ}$,$\beta = 30^{\circ}$时,$\sin75^{\circ}=\sin(45^{\circ}+30^{\circ})=\frac{\sqrt{2}}{2}\times\frac{\sqrt{3}}{2}+\frac{\sqrt{2}}{2}\times\frac{1}{2}=\frac{\sqrt{6}+\sqrt{2}}{4}$,则$\sin15^{\circ}$的值为________.
答案:
$\frac{\sqrt{6}-\sqrt{2}}{4}$
8. 计算:
(1)(常州一模)$2\sin60^{\circ}+3\tan30^{\circ}-\tan^{2}45^{\circ}$;
(2)$\sin45^{\circ}\cos45^{\circ}-\frac{\cos60^{\circ}}{1 - \sin30^{\circ}}-\frac{\tan60^{\circ}}{\cos30^{\circ}}$.
(1)(常州一模)$2\sin60^{\circ}+3\tan30^{\circ}-\tan^{2}45^{\circ}$;
(2)$\sin45^{\circ}\cos45^{\circ}-\frac{\cos60^{\circ}}{1 - \sin30^{\circ}}-\frac{\tan60^{\circ}}{\cos30^{\circ}}$.
答案:
(1)$2\sqrt{3}-1$
(2)$-2\frac{1}{2}$
(1)$2\sqrt{3}-1$
(2)$-2\frac{1}{2}$
9.(2024·龙东地区)先化简,再求值:$\frac{m^{2}-2m + 1}{m^{2}-1}\div(\frac{m^{2}}{m^{2}+m}-1)$,其中$m = \cos660^{\circ}$.
答案:
原式$=\frac{(m - 1)^2}{(m + 1)(m - 1)}\div\frac{-m}{m^2 + m}=\frac{m - 1}{m + 1}\cdot\frac{m(m + 1)}{-m}=1 - m$. 当$m = \cos60^{\circ}=\frac{1}{2}$时,原式$=1-\frac{1}{2}=\frac{1}{2}$
查看更多完整答案,请扫码查看