2025年通城学典非常课课通九年级数学下册苏科版江苏专版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年通城学典非常课课通九年级数学下册苏科版江苏专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
10. 已知锐角$\alpha$满足$2\cos\alpha(\cos\alpha + 1)=5\cos\alpha - 1$,求锐角$\alpha$的度数.
答案:
原方程可变为$2\cos^{2}\alpha - 3\cos\alpha + 1 = 0$. $\therefore$ $(2\cos\alpha - 1)(\cos\alpha - 1)=0$,解得$\cos\alpha=\frac{1}{2}$或$\cos\alpha = 1$. $\because$ $\alpha$为锐角,$\therefore$ $0<\cos\alpha<1$. $\therefore$ $\cos\alpha=\frac{1}{2}$. $\therefore$ 锐角$\alpha$的度数为$60^{\circ}$
11.(2024·雅安改编)如图,$AB$是$\odot O$的直径,$C$是$\odot O$上的一点,$P$是$BA$延长线上的一点,连接$AC、BC、PC$,$\angle PCA = \angle B$,$CD\perp AB$于点$D$.
(1)求证:$PC$是$\odot O$的切线;
(2)若$\sin B = \frac{1}{2}$,求证:$AC = AP$;
(3)若$PA = 4$,$BD = 6$,求$\angle BAC$的度数.

(1)求证:$PC$是$\odot O$的切线;
(2)若$\sin B = \frac{1}{2}$,求证:$AC = AP$;
(3)若$PA = 4$,$BD = 6$,求$\angle BAC$的度数.
答案:
(1) 连接$OC$. $\because$ $AB$是$\odot O$的直径,$\therefore$ $\angle ACB = 90^{\circ}$. $\therefore$ $\angle BCO+\angle OCA = 90^{\circ}$. $\because$ $OB = OC$,$\therefore$ $\angle B=\angle BCO$. $\because$ $\angle PCA=\angle B$,$\therefore$ $\angle PCA=\angle BCO$. $\therefore$ $\angle PCA+\angle OCA = 90^{\circ}$. $\therefore$ $OC\perp PC$. $\because$ 点$C$在$\odot O$上,$\therefore$ $PC$是$\odot O$的切线
(2) $\because$ $\sin B=\frac{1}{2}$,$\angle ACB = 90^{\circ}$,$\therefore$ $\angle B = 30^{\circ}$. $\therefore$ $\angle PCA=\angle B = 30^{\circ}$,$\angle CAB = 90^{\circ}-30^{\circ}=60^{\circ}$. $\because$ $\angle CAB=\angle P+\angle PCA$,$\therefore$ $\angle P=\angle CAB-\angle PCA = 30^{\circ}$. $\therefore$ $\angle PCA=\angle P = 30^{\circ}$. $\therefore$ $AC = AP$
(3) 设$AD = x$. 由题意,得$\angle BCD+\angle B = 90^{\circ}$,$\angle BCD+\angle DCA = 90^{\circ}$,$\therefore$ $\angle B=\angle DCA$. $\because$ $\angle BDC=\angle CDA = 90^{\circ}$,$\therefore$ $\triangle BCD\sim\triangle CAD$. $\therefore$ $\frac{BD}{CD}=\frac{CD}{AD}$. $\therefore$ $CD^{2}=AD\cdot BD = 6x$. $\because$ $\angle P=\angle P$,$\angle PCA=\angle B$,$\therefore$ $\triangle PAC\sim\triangle PCB$. $\therefore$ $\frac{PA}{PC}=\frac{PC}{PB}$. $\therefore$ $PC^{2}=PA\cdot PB = 4(6 + 4 + x)=4(10 + x)$. 在$Rt\triangle PCD$中,$\because$ $\angle CDP = 90^{\circ}$,$\therefore$ $PD^{2}+CD^{2}=PC^{2}$,即$(4 + x)^{2}+6x = 4(10 + x)$. 整理,得$x^{2}+10x - 24 = 0$,解得$x_{1}=2$,$x_{2}=-12$(不合题意,舍去). $\therefore$ $AD = 2$,$CD^{2}=6\times2 = 12$. $\therefore$ $CD = 2\sqrt{3}$. $\because$ $\angle ADC = 90^{\circ}$,$\therefore$ $\tan\angle DAC=\frac{CD}{AD}=\frac{2\sqrt{3}}{2}=\sqrt{3}$. $\therefore$ 锐角$\angle BAC$的度数为$60^{\circ}$
(1) 连接$OC$. $\because$ $AB$是$\odot O$的直径,$\therefore$ $\angle ACB = 90^{\circ}$. $\therefore$ $\angle BCO+\angle OCA = 90^{\circ}$. $\because$ $OB = OC$,$\therefore$ $\angle B=\angle BCO$. $\because$ $\angle PCA=\angle B$,$\therefore$ $\angle PCA=\angle BCO$. $\therefore$ $\angle PCA+\angle OCA = 90^{\circ}$. $\therefore$ $OC\perp PC$. $\because$ 点$C$在$\odot O$上,$\therefore$ $PC$是$\odot O$的切线
(2) $\because$ $\sin B=\frac{1}{2}$,$\angle ACB = 90^{\circ}$,$\therefore$ $\angle B = 30^{\circ}$. $\therefore$ $\angle PCA=\angle B = 30^{\circ}$,$\angle CAB = 90^{\circ}-30^{\circ}=60^{\circ}$. $\because$ $\angle CAB=\angle P+\angle PCA$,$\therefore$ $\angle P=\angle CAB-\angle PCA = 30^{\circ}$. $\therefore$ $\angle PCA=\angle P = 30^{\circ}$. $\therefore$ $AC = AP$
(3) 设$AD = x$. 由题意,得$\angle BCD+\angle B = 90^{\circ}$,$\angle BCD+\angle DCA = 90^{\circ}$,$\therefore$ $\angle B=\angle DCA$. $\because$ $\angle BDC=\angle CDA = 90^{\circ}$,$\therefore$ $\triangle BCD\sim\triangle CAD$. $\therefore$ $\frac{BD}{CD}=\frac{CD}{AD}$. $\therefore$ $CD^{2}=AD\cdot BD = 6x$. $\because$ $\angle P=\angle P$,$\angle PCA=\angle B$,$\therefore$ $\triangle PAC\sim\triangle PCB$. $\therefore$ $\frac{PA}{PC}=\frac{PC}{PB}$. $\therefore$ $PC^{2}=PA\cdot PB = 4(6 + 4 + x)=4(10 + x)$. 在$Rt\triangle PCD$中,$\because$ $\angle CDP = 90^{\circ}$,$\therefore$ $PD^{2}+CD^{2}=PC^{2}$,即$(4 + x)^{2}+6x = 4(10 + x)$. 整理,得$x^{2}+10x - 24 = 0$,解得$x_{1}=2$,$x_{2}=-12$(不合题意,舍去). $\therefore$ $AD = 2$,$CD^{2}=6\times2 = 12$. $\therefore$ $CD = 2\sqrt{3}$. $\because$ $\angle ADC = 90^{\circ}$,$\therefore$ $\tan\angle DAC=\frac{CD}{AD}=\frac{2\sqrt{3}}{2}=\sqrt{3}$. $\therefore$ 锐角$\angle BAC$的度数为$60^{\circ}$
12.(2023·菏泽改编)如图,抛物线$y = -x^{2}+bx + c$与$x$轴交于$A、B$两点,与$y$轴交于点$C(0,4)$,其对称轴为直线$x = -\frac{3}{2}$,$D$是线段$OC$上的一动点,连接$AD、BD$. 将$\triangle ABD$沿直线$AD$翻折,得到$\triangle AB'D$,当点$B'$恰好落在抛物线的对称轴上时,$\cos\angle B'AB$的值为( )

A. $\frac{\sqrt{3}}{3}$
B. $\frac{1}{2}$
C. $\frac{\sqrt{2}}{2}$
D. $\frac{\sqrt{3}}{2}$
A. $\frac{\sqrt{3}}{3}$
B. $\frac{1}{2}$
C. $\frac{\sqrt{2}}{2}$
D. $\frac{\sqrt{3}}{2}$
答案:
B 解析:如图,设直线$x = -\frac{3}{2}$与$x$轴交于点$H$. $\because$ 抛物线$y=-x^{2}+bx + c$与$y$轴交于点$C(0,4)$,$\therefore$ 易得$c = 4$. $\because$ 对称轴为直线$x = -\frac{3}{2}$,$\therefore$ $-\frac{b}{-2}=-\frac{3}{2}$,解得$b=-3$. $\therefore$ 抛物线对应的函数表达式为$y=-x^{2}-3x + 4$. 令$-x^{2}-3x + 4 = 0$,解得$x_{1}=1$,$x_{2}=-4$. $\therefore$ 点$A$的坐标为$(-4,0)$,点$B$的坐标为$(1,0)$. $\therefore$ $OA = 4$,$AB = 1-(-4)=5$. 由翻折,可得$AB' = AB = 5$. $\because$ 对称轴为直线$x = -\frac{3}{2}$,$\therefore$ $AH = -\frac{3}{2}-(-4)=\frac{5}{2}$. $\because$ $AB' = AB = 5 = 2AH$. $\therefore$ $\sin\angle AB'H=\frac{AH}{AB'}=\frac{1}{2}$. $\therefore$ 锐角$\angle AB'H$的度数为$30^{\circ}$. $\therefore$ $\angle B'AB = 90^{\circ}-30^{\circ}=60^{\circ}$. $\therefore$ $\cos\angle B'AB=\frac{1}{2}$.
B 解析:如图,设直线$x = -\frac{3}{2}$与$x$轴交于点$H$. $\because$ 抛物线$y=-x^{2}+bx + c$与$y$轴交于点$C(0,4)$,$\therefore$ 易得$c = 4$. $\because$ 对称轴为直线$x = -\frac{3}{2}$,$\therefore$ $-\frac{b}{-2}=-\frac{3}{2}$,解得$b=-3$. $\therefore$ 抛物线对应的函数表达式为$y=-x^{2}-3x + 4$. 令$-x^{2}-3x + 4 = 0$,解得$x_{1}=1$,$x_{2}=-4$. $\therefore$ 点$A$的坐标为$(-4,0)$,点$B$的坐标为$(1,0)$. $\therefore$ $OA = 4$,$AB = 1-(-4)=5$. 由翻折,可得$AB' = AB = 5$. $\because$ 对称轴为直线$x = -\frac{3}{2}$,$\therefore$ $AH = -\frac{3}{2}-(-4)=\frac{5}{2}$. $\because$ $AB' = AB = 5 = 2AH$. $\therefore$ $\sin\angle AB'H=\frac{AH}{AB'}=\frac{1}{2}$. $\therefore$ 锐角$\angle AB'H$的度数为$30^{\circ}$. $\therefore$ $\angle B'AB = 90^{\circ}-30^{\circ}=60^{\circ}$. $\therefore$ $\cos\angle B'AB=\frac{1}{2}$.
13.(宝应一模)将两个直角三角形拼成如图所示的四边形$ABCD$,一边重合,若$\angle CAB = 45^{\circ}$,$\angle CAD = 30^{\circ}$,连接$BD$,则$\tan\angle DBC =$_______.

答案:
$\frac{4-\sqrt{3}}{13}$ 解析:由题意,易得$\angle ACD = 60^{\circ}$. 如图,过点$D$作$DH\perp BC$,交$BC$的延长线于点$H$,则$\angle DCH = 180^{\circ}-\angle ACB-\angle ACD = 180^{\circ}-90^{\circ}-60^{\circ}=30^{\circ}$. 在$Rt\triangle CDH$中,设$DH = x$,则$\sin30^{\circ}=\frac{DH}{CD}=\frac{1}{2}$,$\tan30^{\circ}=\frac{DH}{CH}=\frac{\sqrt{3}}{3}$. $\therefore$ $CD = 2x$,$CH = \sqrt{3}x$. 在$Rt\triangle ACD$中,$\because$ $\angle ADC = 90^{\circ}$,$\angle CAD = 30^{\circ}$,$\therefore$ $\sin30^{\circ}=\frac{CD}{AC}=\frac{1}{2}$,即$AC = 4x$. $\therefore$ 易得$BC = AC = 4x$. $\therefore$ $BH = BC + CH = 4x+\sqrt{3}x=(4+\sqrt{3})x$. 在$Rt\triangle BDH$中,$\because$ $\angle DHB = 90^{\circ}$,$\therefore$ $\tan\angle DBC=\frac{DH}{BH}=\frac{x}{(4+\sqrt{3})x}=\frac{4-\sqrt{3}}{13}$.
$\frac{4-\sqrt{3}}{13}$ 解析:由题意,易得$\angle ACD = 60^{\circ}$. 如图,过点$D$作$DH\perp BC$,交$BC$的延长线于点$H$,则$\angle DCH = 180^{\circ}-\angle ACB-\angle ACD = 180^{\circ}-90^{\circ}-60^{\circ}=30^{\circ}$. 在$Rt\triangle CDH$中,设$DH = x$,则$\sin30^{\circ}=\frac{DH}{CD}=\frac{1}{2}$,$\tan30^{\circ}=\frac{DH}{CH}=\frac{\sqrt{3}}{3}$. $\therefore$ $CD = 2x$,$CH = \sqrt{3}x$. 在$Rt\triangle ACD$中,$\because$ $\angle ADC = 90^{\circ}$,$\angle CAD = 30^{\circ}$,$\therefore$ $\sin30^{\circ}=\frac{CD}{AC}=\frac{1}{2}$,即$AC = 4x$. $\therefore$ 易得$BC = AC = 4x$. $\therefore$ $BH = BC + CH = 4x+\sqrt{3}x=(4+\sqrt{3})x$. 在$Rt\triangle BDH$中,$\because$ $\angle DHB = 90^{\circ}$,$\therefore$ $\tan\angle DBC=\frac{DH}{BH}=\frac{x}{(4+\sqrt{3})x}=\frac{4-\sqrt{3}}{13}$.
14. 如图,$Rt\triangle ABC\cong Rt\triangle DEC$,$\angle ACB = \angle DCE = 90^{\circ}$,$\angle E = 30^{\circ}$,$D$为$AB$的中点,$AC = 1$.将$\triangle DEC$绕点$D$按顺时针方向旋转至$\triangle DE'C'$处,使$E'D、C'D$分别与$Rt\triangle ABC$的直角边$BC$交于点$M、N$,则当$\triangle DMN$为等边三角形时,求$AM$的长.

答案:
$\because$ $\angle E = 30^{\circ}$,$\angle DCE = 90^{\circ}$,$\therefore$ $\angle CDE = 60^{\circ}$. $\because$ $Rt\triangle ABC\cong Rt\triangle DEC$,$\therefore$ $\angle CAB=\angle CDE = 60^{\circ}$,$AC = DC$. $\therefore$ $\triangle ACD$是等边三角形. $\therefore$ $AD = AC = 1$,$\angle ACD = 60^{\circ}$. 又$\because$ $\angle ECA+\angle ACD=\angle DCE = 90^{\circ}$,$\therefore$ $\angle ECA = 30^{\circ}$. 同理,$\angle DCM = 30^{\circ}$. $\because$ $\triangle DMN$是等边三角形,$\therefore$ $\angle DMN = 60^{\circ}$. $\therefore$ $\angle CDM=\angle DMN-\angle DCM = 30^{\circ}$. $\therefore$ $\angle CDM=\angle DCM$. $\therefore$ $MD = MC$,$\angle ADM=\angle ADC+\angle CDM = 90^{\circ}$. $\because$ $AC = AD$,$\angle ACM=\angle ADM = 90^{\circ}$,$MC = MD$,$\therefore$ $\triangle ACM\cong\triangle ADM$. $\therefore$ $\angle CAM=\angle DAM=\frac{1}{2}\angle CAB = 30^{\circ}$. $\therefore$ 在$Rt\triangle ADM$中,$\cos\angle DAM=\frac{AD}{AM}=\frac{\sqrt{3}}{2}$,即$AM=\frac{2\sqrt{3}}{3}$
查看更多完整答案,请扫码查看