2025年通城学典非常课课通九年级数学下册苏科版江苏专版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年通城学典非常课课通九年级数学下册苏科版江苏专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年通城学典非常课课通九年级数学下册苏科版江苏专版》

8. (2024·宜宾)如图,正五边形ABCDE的边长为4,则这个正五边形的对角线AC的长是______.
第8题
答案: $2\sqrt{5}+2$
9. (2024·连云港)如图,将一张矩形纸片ABCD上下对折,使之完全重合,打开后,得到折痕EF,连接BF.再将矩形纸片折叠,使点B落在BF上的点H处,折痕为AG.若G恰好为线段BC最靠近点B的一个五等分点,AB = 4,则BC的长为______.
BiH第9题
答案: $2\sqrt{10}$ 解析:设$AG$与$BF$交于点$M$,$BG = a$,则$BC = 5a$.$\because$四边形$ABCD$是矩形,$\therefore\angle ABC=\angle C = 90^{\circ}$,$AB = CD = 4$.$\because$上下对折后得到折痕$EF$,$\therefore CF=\frac{1}{2}CD = 2$.$\because AG$是折痕,点$B$的对应点为$H$,$\therefore AG\perp BH$.$\therefore\angle BMG = 90^{\circ}$.$\therefore\angle CBF+\angle BGA = 90^{\circ}$.$\because\angle BAG+\angle BGA = 90^{\circ}$,$\therefore\angle BAG=\angle CBF$.$\because\angle ABG=\angle C = 90^{\circ}$,$\therefore\triangle ABG\backsim\triangle BCF$.$\therefore\frac{AB}{BC}=\frac{BG}{CF}$.$\therefore\frac{4}{5a}=\frac{a}{2}$,解得$a=\frac{2}{5}\sqrt{10}$(负值舍去).$\therefore BC = 5a = 2\sqrt{10}$.
10. (2023·南京改编)如图,在菱形ABCD中,E是AB上一点,将△BCE沿CE翻折得到△FCE,CF与AD交于点G.若CF⊥AD,FG = 1,DG = 3,则BE = ______.
B第10题
答案:
$\frac{25}{7}$ 解析:如图,过点$E$作$EH\perp BC$于点$H$,则$\angle BHE=\angle EHC = 90^{\circ}$.设$CG = x$,则$CF = x + 1$.$\because CE$是折痕,$\therefore\angle BCE=\angle FCE$,$BC = CF = x + 1$.$\because$四边形$ABCD$是菱形,$\therefore\angle B=\angle D$,$AD// BC$,$CD = BC = x + 1$.$\because CF\perp AD$,$\therefore\angle CGD = 90^{\circ}$.$\therefore$在$Rt\triangle CGD$中,$CG^{2}+DG^{2}=CD^{2}$,即$x^{2}+3^{2}=(x + 1)^{2}$,解得$x = 4$.$\therefore CG = 4$,$BC = 5$.$\because AD// BC$,$\therefore\angle BCG=\angle CGD = 90^{\circ}$.$\therefore\angle BCE=\angle FCE=\frac{1}{2}\angle BCG = 45^{\circ}$.$\therefore\angle HEC = 90^{\circ}-\angle BCE = 45^{\circ}=\angle BCE$.$\therefore EH = CH$.$\because\angle B=\angle D$,$\angle BHE=\angle DGC = 90^{\circ}$,$\therefore\triangle BHE\backsim\triangle DGC$.$\therefore\frac{BH}{DG}=\frac{EH}{CG}$,即$\frac{BH}{EH}=\frac{DG}{CG}=\frac{3}{4}$.设$BH = 3k$,则$EH = CH = 4k$.$\because\angle BHE = 90^{\circ}$,$\therefore BE=\sqrt{BH^{2}+EH^{2}}=\sqrt{(3k)^{2}+(4k)^{2}} = 5k$.$\because BC = 5$,$\therefore 3k + 4k = 5$,解得$k=\frac{5}{7}$.$\therefore BE = 5\times\frac{5}{7}=\frac{25}{7}$.
第10题
11. 如图,在Rt△ABC中,∠ACB = 90°,AC = 9,BC = 12. 在Rt△DEF中,∠DFE = 90°,DF = 3,EF = 4.用一根始终绷直的弹性染色线连接CF,Rt△DEF从起始位置(点D与点B重合)平移至终止位置(点E与点A重合),且斜边DE始终在线段AB上,则Rt△ABC的外部被染色的区域的面积是______.
A第11题
答案:
21 解析:如图,设$CF$交$AB$于点$M$,连接$CF'$,交$AB$于点$N$,过点$F$作$FG\perp AB$于点$G$,过点$F'$作$F'H\perp AB$于点$H$,连接$FF'$,则易得四边形$FGHF'$是矩形,$Rt\triangle ABC$的外部被染色的区域是梯形$MFF'N$.在$Rt\triangle DEF$中,$\because\angle DFE = 90^{\circ}$,$\therefore DE=\sqrt{DF^{2}+EF^{2}}=\sqrt{3^{2}+4^{2}} = 5$.在$Rt\triangle ABC$中,$\because\angle ACB = 90^{\circ}$,$\therefore AB=\sqrt{AC^{2}+BC^{2}}=\sqrt{9^{2}+12^{2}} = 15$.$\because S_{\triangle DEF}=\frac{1}{2}DF\cdot EF=\frac{1}{2}DE\cdot FG$,$\therefore FG=\frac{12}{5}$.$\because\angle BGF = 90^{\circ}$,$\therefore BG=\sqrt{BF^{2}-FG^{2}}=\sqrt{3^{2}-(\frac{12}{5})^{2}}=\frac{9}{5}$.$\therefore GE = BE - BG=\frac{16}{5}$.同理,可得$AH = GE=\frac{16}{5}$,$F'H = FG=\frac{12}{5}$.$\therefore FF' = GH = AB - BG - AH = 10$.$\because$易得$BF// AC$,$\therefore$易得$\triangle BMF\backsim\triangle AMC$.$\therefore\frac{BM}{AM}=\frac{BF}{AC}=\frac{1}{3}$.$\therefore BM=\frac{1}{4}AB=\frac{15}{4}$.同理,可得$AN=\frac{1}{4}AB=\frac{15}{4}$.$\therefore MN = AB - BM - AN=\frac{15}{2}$.$\therefore Rt\triangle ABC$的外部被染色的区域的面积$=\frac{1}{2}\times(10+\frac{15}{2})\times\frac{12}{5}=21$.
第11题
12. (2023·无锡)二次函数y = a(x - 1)(x - 5)(a > $\frac{1}{2}$)的图像与x轴交于点A、B(点A在点B的左侧),与y轴交于点C,过点M(3,1)的直线将△ABC分成两部分,这两部分是三角形或梯形,且面积相等,则a的值为______.
答案:
$\frac{9}{10}$或$\frac{2+\sqrt{2}}{5}$或$\frac{\sqrt{2}+1}{2}$ 解析:在$y = a(x - 1)(x - 5)$中,令$y = 0$,得$x_{1}=1$,$x_{2}=5$.$\therefore$点$A$的坐标为$(1,0)$,点$B$的坐标为$(5,0)$.令$x = 0$,得$y = 5a$.$\therefore$点$C$的坐标为$(0,5a)$.$\because$点$M$的坐标为$(3,1)$,$\therefore$易得直线$BM$对应的函数表达式为$y = -\frac{1}{2}x+\frac{5}{2}$.$\therefore$直线$BM$与$y$轴交于点$(0,\frac{5}{2})$.$\because a>\frac{1}{2}$,$\therefore 5a>\frac{5}{2}$.$\therefore$点$M$必在$\triangle ABC$内部.当分成两个三角形时,直线必过$\triangle ABC$的一个顶点,若两个三角形的面积相等,则过点$M$的直线必为$\triangle ABC$的中线所在的直线.① 如图①,若直线$AM$平分$\triangle ABC$的面积,$\because$点$A$的坐标为$(1,0)$,点$M$的坐标为$(3,1)$,$\therefore$易得直线$AM$对应的函数表达式为$y=\frac{1}{2}x-\frac{1}{2}$.$\because BC$的中点的坐标为$(\frac{5}{2},\frac{5}{2}a)$,$\therefore$把$(\frac{5}{2},\frac{5}{2}a)$代入$y=\frac{1}{2}x-\frac{1}{2}$,得$\frac{5}{2}a=\frac{1}{2}\times\frac{5}{2}-\frac{1}{2}$,解得$a=\frac{3}{10}$.$\because\frac{3}{10}<\frac{1}{2}$,$\therefore$此种情况不存在.② 如图②,若直线$BM$平分$\triangle ABC$的面积,$\because$直线$BM$对应的函数表达式为$y = -\frac{1}{2}x+\frac{5}{2}$,$AC$的中点的坐标为$(\frac{1}{2},\frac{5}{2}a)$,$\therefore$把$(\frac{1}{2},\frac{5}{2}a)$代入$y = -\frac{1}{2}x+\frac{5}{2}$,得$\frac{5}{2}a = -\frac{1}{2}\times\frac{1}{2}+\frac{5}{2}$,解得$a=\frac{9}{10}$.$\because\frac{9}{10}>\frac{1}{2}$,$\therefore$此种情况存在.③ 如图③,若直线$CM$平分$\triangle ABC$的面积,$\because AB$的中点的坐标为$(3,0)$,点$M$的坐标为$(3,1)$,$\therefore$直线$CM// y$轴.$\therefore$此种情况不存在.当分成三角形和梯形时,过点$M$的直线必与$\triangle ABC$的一边平行.$\therefore$分成的三角形与$\triangle ABC$相似.$\because$分成的三角形和梯形的面积相等,$\therefore$分成的三角形和$\triangle ABC$的面积之比为$1:2$.$\therefore$分成的三角形和$\triangle ABC$的相似比为$\frac{\sqrt{2}}{2}$.① 如图④,直线$ME// AB$,交$y$轴于点$E$,交$CA$于点$N$.$\therefore$易得$\frac{CE}{CO}=\frac{\sqrt{2}}{2}$.$\therefore\frac{5a - 1}{5a}=\frac{\sqrt{2}}{2}$,解得$a=\frac{2+\sqrt{2}}{5}$.$\because\frac{2+\sqrt{2}}{5}>\frac{1}{2}$,$\therefore$此种情况存在.② 如图⑤,直线$ME// AC$,交$x$轴于点$E$,过点$M$作$MN\perp x$轴于点$N$,则点$N$的坐标为$(3,0)$.$\therefore$易得$\frac{BE}{BA}=\frac{\sqrt{2}}{2}$.$\because BA = 5 - 1 = 4$,$\therefore BE = 2\sqrt{2}$.$\because BN = 5 - 3 = 2$,$2<2\sqrt{2}$,$\therefore BN<BE$,即点$N$在点$E$的右侧.$\therefore$此种情况不存在.③ 如图⑥,直线$ME// BC$,交$x$轴于点$E$,过点$M$作$MN\perp x$轴于点$N$,则点$N$的坐标为$(3,0)$.$\therefore$易得$\frac{AE}{AB}=\frac{\sqrt{2}}{2}$,$\angle MEN=\angle CBO$,$AN = 3 - 1 = 2$,$MN = 1$.$\because AB = 4$,$\therefore AE = 2\sqrt{2}$.$\therefore NE = AE - AN = 2\sqrt{2}-2$.$\because\angle MEN=\angle CBO$,$\angle MNE=\angle COB = 90^{\circ}$,$\therefore\triangle MNE\backsim\triangle COB$.$\therefore\frac{MN}{CO}=\frac{NE}{OB}$.$\therefore\frac{1}{5a}=\frac{2\sqrt{2}-2}{5}$,解得$a=\frac{\sqrt{2}+1}{2}$.$\because\frac{\sqrt{2}+1}{2}>\frac{1}{2}$,$\therefore$此种情况存在.综上所述,$a$的值为$\frac{9}{10}$或$\frac{2+\sqrt{2}}{5}$或$\frac{\sqrt{2}+1}{2}$.
OABx Bx0A 0ABx ENM0ABx 第12题 OANBx
13. (2023·镇江)如图,正比例函数y = - 3x与反比例函数y = $\frac{k}{x}$的图像交于点A、B(1,m),点C在x轴的负半轴上,且∠ACO = 45°.
(1)m = ______,k = ______,点C的坐标为______;
(2)点P在x轴上,若以B、O、P为顶点的三角形与△AOC相似,求点P的坐标.
第13题
答案:

(1) -3 -3 (-4,0) 解析:$\because$点$B(1,m)$在正比例函数$y = -3x$的图像上,$\therefore m = -3\times1 = -3$.$\therefore$点$B$的坐标为$(1,-3)$.$\because$点$B$在反比例函数$y=\frac{k}{x}$的图像上,$\therefore k = 1\times(-3)=-3$.$\because$正比例函数与反比例函数的图像都是关于原点$O$的中心对称图形,$\therefore$点$A$与点$B$关于原点$O$成中心对称.$\therefore$点$A$的坐标为$(-1,3)$.如图,过点$A$作$AH\perp x$轴于点$H$,则$OH = 1$,$AH = 3$,$\angle AHC = 90^{\circ}$.$\therefore\angle CAH = 90^{\circ}-\angle ACO = 90^{\circ}-45^{\circ}=45^{\circ}=\angle ACO$.$\therefore AH = CH = 3$.$\therefore OC = OH + CH = 1 + 3 = 4$.$\because$点$C$在$x$轴的负半轴上,$\therefore$点$C$的坐标为$(-4,0)$.
(2) 由(1),得$\angle AHC=\angle AHO = 90^{\circ}$,$AC=\sqrt{AH^{2}+CH^{2}}=\sqrt{3^{2}+3^{2}} = 3\sqrt{2}$,$BO = AO=\sqrt{AH^{2}+OH^{2}}=\sqrt{3^{2}+1^{2}}=\sqrt{10}$.$\because OH<AH$,$\therefore\angle OAH<45^{\circ}$.$\therefore\angle CAO<90^{\circ}$.易知$\angle AOC<90^{\circ}$,$\therefore\triangle AOC$为锐角三角形.$\therefore$与$\triangle AOC$相似的$\triangle BOP$也为锐角三角形.$\because\angle BOC>90^{\circ}$,$\therefore$点$P$在$x$轴的正半轴上.设点$P$的坐标为$(n,0)$($n>0$),则$OP = n$.$\because\angle BOP=\angle AOC$,$\therefore$分两种情况:① 当$\triangle BOP\backsim\triangle AOC$时,$\frac{OP}{OC}=\frac{BO}{AO}$.$\therefore\frac{n}{4}=\frac{\sqrt{10}}{\sqrt{10}}$,解得$n = 4$.$\therefore$点$P$的坐标为$(4,0)$.② 当$\triangle BOP\backsim\triangle COA$时,$\frac{OP}{OA}=\frac{BO}{CO}$,即$\frac{n}{\sqrt{10}}=\frac{\sqrt{10}}{4}$,解得$n=\frac{5}{2}$.$\therefore$点$P$的坐标为$(\frac{5}{2},0)$.综上所述,点$P$的坐标为$(4,0)$或$(\frac{5}{2},0)$
第13题
14. (2023·南京)如图,玻璃桌面a与地面b平行,桌面上台灯的点光源O与铅笔AB在同一竖直平面上.在灯光照射下,AB在地面上形成的影子为CD(不考虑折射),AB//CD.
(1)在桌面上沿着AB方向平移铅笔,试判断CD的长是否改变.
(2)桌面上一点P恰在点O的正下方,且OP = 36 cm,PA = 18 cm,AB = 18 cm,桌面的高度为60 cm.在点O与AB所确定的平面内,将AB绕点A旋转,使得CD的长最大.
①画出此时AB所在位置的示意图;
②CD的长最大为______cm.
CD第14题
答案:

(1) 如图①,过点$O$作$OF\perp$地面$b$于点$F$,交桌面$a$于点$E$.$\because a// b$,$\therefore OF\perp$桌面$a$.$\because AB// CD$,$\therefore\triangle OAB\backsim\triangle OCD$.$\because OE$、$OF$分别是$\triangle OAB$、$\triangle OCD$对应边上的高,$\therefore\frac{AB}{CD}=\frac{OE}{OF}$.$\therefore CD=\frac{AB\cdot OF}{OE}$.根据题意,得$AB$、$OE$、$OF$的长为定值,$\therefore CD$的长不变
(2) ① 如图②,$AB'$的位置即为所求 解析:$\because$点$A$固定,$\therefore$点$C$固定.$\therefore$若想$CD$的长最大,则需要点$D$离点$C$最远.$\because$点$B$在以点$A$为圆心、$AB$长为半径的圆上,$\therefore$离点$C$最远的点$D$和点光源$O$的连线与$\odot A$相切.如图②,以点$A$为圆心、$AB$长为半径作$\odot A$,以点$O$为圆心、$OP$长为半径画弧,交$\odot A$于另一点$B'$,连接$OB'$并延长,交地面$b$于点$D$,交桌面$a$于点$G$,则此时$CD$的长最大.
② 80 解析:设$AG = x\ cm$,则$PG=(x + 18)\ cm$.$\because$易得$\angle AB'G = 90^{\circ}$,$\angle OPG = 90^{\circ}$,$\therefore\angle AB'G=\angle OPG$.$\because\angle B'GA=\angle PGO$,$\therefore\triangle AB'G\backsim\triangle OPG$.$\therefore\frac{AG}{OG}=\frac{B'G}{PG}=\frac{AB'}{OP}=\frac{18}{36}=\frac{1}{2}$.$\therefore OG = 2AG = 2x\ cm$.$\therefore B'G=(2x - 36)\ cm$.$\therefore\frac{2x - 36}{x + 18}=\frac{1}{2}$,解得$x = 30$.经检验,$x = 30$是原方程的解,且符合实际.$\therefore AG = 30\ cm$.如图②,延长$OP$交地面$b$于点$Q$,则$PQ = 60\ cm$.同理于
(1),得$CD=\frac{AG\cdot OQ}{OP}=\frac{30\times(36 + 60)}{36}=80(cm)$.
第14题

查看更多完整答案,请扫码查看

关闭