2025年通城学典非常课课通九年级数学下册苏科版江苏专版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年通城学典非常课课通九年级数学下册苏科版江苏专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年通城学典非常课课通九年级数学下册苏科版江苏专版》

8.(2024·兰州)如图,△ABC内接于⊙O,AB为⊙O的直径,D为⊙O上一点,BC = BD,延长BA至点E,使得∠ADE = ∠CBA.
(1)求证:ED是⊙O的切线;
(2)若OB = 4,tan ∠CBA = $\frac{1}{2}$,求ED的长.
B第8题
答案:
(1) 连接$OD$. $\because AB$为$\odot O$的直径,$\therefore \angle BCA=\angle BDA = 90^{\circ}$. 在$Rt\triangle BCA$和$Rt\triangle BDA$中,$\begin{cases}BA = BA,\\BC = BD,\end{cases}$ $\therefore Rt\triangle BCA\cong Rt\triangle BDA$. $\therefore \angle CBA=\angle DBA$. $\because OB = OD$,$\therefore \angle BDO=\angle DBA=\angle CBA$. $\because \angle ADE=\angle CBA$,$\therefore \angle ADE=\angle DBA=\angle BDO$. $\because \angle BDA=\angle BDO+\angle ADO = 90^{\circ}$,$\therefore \angle ODE=\angle ADE+\angle ADO = 90^{\circ}$. $\therefore ED\perp OD$. $\because$ 点$D$在$\odot O$上,$\therefore ED$是$\odot O$的切线
(2) $\because \angle CBA=\angle DBA$,$\therefore \tan\angle DBA=\tan\angle CBA=\frac{1}{2}$. 在$Rt\triangle ABD$中,$\because \angle BDA = 90^{\circ}$,$\therefore \tan\angle DBA=\frac{AD}{BD}=\frac{1}{2}$. $\because \angle ADE=\angle DBA$,$\angle E=\angle E$,$\therefore \triangle EAD\sim\triangle EDB$. $\therefore \frac{ED}{EB}=\frac{EA}{ED}=\frac{AD}{DB}=\frac{1}{2}$. $\therefore ED=\frac{1}{2}EB$,$EA=\frac{1}{2}ED$. $\because OB = 4$,$\therefore AB = 2OB = 8$. $\therefore EB=EA + AB=\frac{1}{2}ED + 8$. $\therefore ED=\frac{1}{2}(\frac{1}{2}ED + 8)$,解得$ED=\frac{16}{3}$. $\therefore ED$的长为$\frac{16}{3}$
9.(2024·邗江一模)如图,在□ABCD中,E是对角线AC上一点,连接BE、DE,且BE = DE.
(1)求证:四边形ABCD是菱形;
(2)若AB = 10,tan ∠BAC = 2,求四边形ABCD的面积.
第9题
答案:
(1) 连接$BD$,交$AC$于点$O$. $\because$ 四边形$ABCD$是平行四边形,$\therefore OB = OD$. 在$\triangle BOE$和$\triangle DOE$中,$\begin{cases}OB = OD,\\OE = OE,\\BE = DE,\end{cases}$ $\therefore \triangle BOE\cong\triangle DOE$. $\therefore \angle EOB=\angle EOD = 90^{\circ}$. $\therefore AC\perp BD$. $\therefore$ 四边形$ABCD$是菱形
(2) $\because$ 四边形$ABCD$是菱形,$\therefore AC = 2OA$,$BD = 2OB$. 由
(1),得$AC\perp BD$,$\therefore \angle AOB = 90^{\circ}$. 在$Rt\triangle AOB$中,$\tan\angle BAO=\tan\angle BAC=\frac{OB}{OA}=2$,$\therefore OB = 2OA$. $\because OB^{2}+OA^{2}=AB^{2}$,$\therefore 4OA^{2}+OA^{2}=10^{2}$. $\therefore OA = 2\sqrt{5}$(负值舍去). $\therefore AC = 2OA = 4\sqrt{5}$. $\therefore BD = 2OB = 8\sqrt{5}$. $\therefore S_{四边形ABCD}=\frac{1}{2}AC\cdot BD=\frac{1}{2}\times4\sqrt{5}\times8\sqrt{5}=80$
10.(2023·杭州)第二十四届国际数学家大会会徽的设计基础是1700多年前我国古代数学家赵爽的“弦图”.如图,在由四个全等的直角三角形(Rt △DAE、Rt △ABF、Rt △BCG、Rt△CDH)和中间一个小正方形EFGH拼成的大正方形ABCD中,∠ABF>∠BAF,连接BE.设∠BAF = α,∠BEF = β,若正方形EFGH与正方形ABCD的面积之比为1∶n,tan α = tan²β,则n的值为( )
AE第10题
A. 5
B. 4
C. 3
D. 2
答案: C 解析:设$AF = a$,$BF = b$,则易得$AE = BF = b$. $\therefore EF=AF - AE=a - b$. 由题意,得$S_{正方形ABCD}=AD^{2}=b^{2}+a^{2}$,$S_{正方形EFGH}=EF^{2}=(a - b)^{2}$. $\because \angle AFB = 90^{\circ}$,$\therefore \tan\alpha=\tan\angle BAF=\frac{BF}{AF}=\frac{b}{a}$. $\because \angle EFB = 90^{\circ}$,$\therefore \tan\beta=\tan\angle BEF=\frac{BF}{EF}=\frac{b}{a - b}$. $\because \tan\alpha=\tan^{2}\beta$,$\therefore \frac{b}{a}=(\frac{b}{a - b})^{2}$. $\therefore (a - b)^{2}=ab$. $\therefore b^{2}+a^{2}=3ab$. $\therefore S_{正方形EFGH}:S_{正方形ABCD}=ab:3ab = 1:3$. $\because S_{正方形EFGH}:S_{正方形ABCD}=1:n$,$\therefore 1:n = 1:3$. $\therefore n = 3$.
11. 如图,在△ABC中,若∠A = 45°,AC² - BC² = $\frac{\sqrt{5}}{5}$AB²,则tan C = _______.
第11题
答案: $\sqrt{5}$ 解析:过点$B$作$BD\perp AC$于点$D$. $\therefore \angle ADB=\angle CDB = 90^{\circ}$. $\therefore \angle ABD = 90^{\circ}-\angle A = 90^{\circ}-45^{\circ}=45^{\circ}$. $\therefore \angle A=\angle ABD$. $\therefore AD = BD$. 设$BD = AD = x$,$CD = y(x\gt0,y\gt0)$. 在$Rt\triangle BCD$中,由勾股定理,得$BC^{2}=BD^{2}+CD^{2}=x^{2}+y^{2}$. 在$Rt\triangle ABD$中,由勾股定理,得$AB^{2}=AD^{2}+BD^{2}=x^{2}+x^{2}=2x^{2}$. $\because AC^{2}-BC^{2}=\frac{\sqrt{5}}{5}AB^{2}$,$\therefore (x + y)^{2}-(x^{2}+y^{2})=\frac{\sqrt{5}}{5}\times2x^{2}$. 化简,得$y=\frac{\sqrt{5}}{5}x$. 在$Rt\triangle BCD$中,$\tan C=\frac{BD}{CD}=\frac{x}{y}=\frac{x}{\frac{\sqrt{5}}{5}x}=\sqrt{5}$.
12.(2023·成都)如图,以△ABC的边AC为直径作⊙O,交边BC于点D,过点C作CE//AB,交⊙O于点E,连接AD、DE,∠B = ∠ADE.
(1)求证:AC = BC;
(2)若tan B = 2,CD = 3,求AB和DE的长.
BC第12题
答案:

(1) $\because CE// AB$,$\therefore \angle BAC=\angle ACE$. $\because \overset{\frown}{AE}=\overset{\frown}{AE}$,$\therefore \angle BAC=\angle ACE=\angle ADE$. $\because \angle B=\angle ADE$,$\therefore \angle B=\angle BAC$. $\therefore AC = BC$
(2) 设$BD = x$. $\because AC$是$\odot O$的直径,$\therefore \angle ADC=\angle ADB = 90^{\circ}$. $\because \tan B = 2$,$\therefore \frac{AD}{BD}=2$,即$AD = 2x$. 根据
(1)中的结论,可得$AC = BC = BD + CD=x + 3$. 在$Rt\triangle ADC$中,根据勾股定理,可得$AD^{2}+DC^{2}=AC^{2}$,即$(2x)^{2}+3^{2}=(x + 3)^{2}$,解得$x_{1}=2$,$x_{2}=0$(不合题意,舍去). $\therefore BD = 2$,$AD = 4$. 在$Rt\triangle ABD$中,根据勾股定理,可得$AB=\sqrt{AD^{2}+BD^{2}}=2\sqrt{5}$. 如图,过点$E$作$EF\perp DC$,交$DC$的延长线于点$F$. $\because CE// AB$,$\therefore \angle ECF=\angle B$. $\because EF\perp CF$,$\therefore \tan\angle ECF=\tan B = 2$,即$\frac{EF}{CF}=2$. $\because \angle B+\angle BAD = 90^{\circ}$,$\angle ADE+\angle EDF = 90^{\circ}$,$\angle B=\angle ADE$,$\therefore \angle BAD=\angle EDF$. $\therefore \angle DEF = 90^{\circ}-\angle EDF = 90^{\circ}-\angle BAD=\angle B$. $\therefore \tan\angle DEF=\tan B=\frac{DF}{EF}=2$. 设$CF = a$,则$DF = CF + CD=a + 3$,$EF = 2a$. $\therefore \frac{a + 3}{2a}=2$,解得$a = 1$. 经检验,$a = 1$是原分式方程的解,且符合题意. $\therefore EF = 2$,$DF = 4$. 在$Rt\triangle DEF$中,根据勾股定理,可得$DE=\sqrt{DF^{2}+EF^{2}}=2\sqrt{5}$
BD第12题

查看更多完整答案,请扫码查看

关闭