2025年通城学典非常课课通九年级数学下册苏科版江苏专版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年通城学典非常课课通九年级数学下册苏科版江苏专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
10.(2024·江阴段考)某工厂计划在每个生产周期内生产并销售完某型号的设备,设备的生产成本为10万元/件.
(1)设第x(0<x≤20)个生产周期设备的售价为z万元/件,z与x之间的关系如图所示,求z关于x的函数表达式(写出x的取值范围).
(2)设第x个生产周期生产并销售完的设备为y件,y与x之间满足函数表达式$y = 5x + 40$(0<x≤20).在(1)的条件下,设第x个生产周期工厂创造的利润为w万元,求w与x之间的函数表达式.

(1)设第x(0<x≤20)个生产周期设备的售价为z万元/件,z与x之间的关系如图所示,求z关于x的函数表达式(写出x的取值范围).
(2)设第x个生产周期生产并销售完的设备为y件,y与x之间满足函数表达式$y = 5x + 40$(0<x≤20).在(1)的条件下,设第x个生产周期工厂创造的利润为w万元,求w与x之间的函数表达式.
答案:
(1) 由题图,可知线段$AB$所在直线对应的函数表达式为$z = 16$。设线段$BC$所在直线对应的函数表达式为$z = kx + b(k\neq0)$。把$B(12,16)$、$C(20,14)$代入,得$\begin{cases}12k + b = 16\\20k + b = 14\end{cases}$,解得$\begin{cases}k=-\frac{1}{4}\\b = 19\end{cases}$,$\therefore$线段$BC$所在直线对应的函数表达式为$z=-\frac{1}{4}x + 19$。综上所述,$z$关于$x$的函数表达式为$z=\begin{cases}16(0<x<12)\\-\frac{1}{4}x + 19(12\leqslant x\leqslant20)\end{cases}$
(2) 当$0<x<12$时,$w=(16 - 10)(5x + 40)=30x + 240$;当$12\leqslant x\leqslant20$时,$w=(-\frac{1}{4}x + 19 - 10)(5x + 40)=-\frac{5}{4}x^{2}+35x + 360$
(1) 由题图,可知线段$AB$所在直线对应的函数表达式为$z = 16$。设线段$BC$所在直线对应的函数表达式为$z = kx + b(k\neq0)$。把$B(12,16)$、$C(20,14)$代入,得$\begin{cases}12k + b = 16\\20k + b = 14\end{cases}$,解得$\begin{cases}k=-\frac{1}{4}\\b = 19\end{cases}$,$\therefore$线段$BC$所在直线对应的函数表达式为$z=-\frac{1}{4}x + 19$。综上所述,$z$关于$x$的函数表达式为$z=\begin{cases}16(0<x<12)\\-\frac{1}{4}x + 19(12\leqslant x\leqslant20)\end{cases}$
(2) 当$0<x<12$时,$w=(16 - 10)(5x + 40)=30x + 240$;当$12\leqslant x\leqslant20$时,$w=(-\frac{1}{4}x + 19 - 10)(5x + 40)=-\frac{5}{4}x^{2}+35x + 360$
11. 如图,在菱形ABCD中,$\angle A = 60^{\circ}$,$AB = 4$,E是边AB上一点,过点E作EF⊥AB,交AD的延长线于点F,交BD于点M,交CD于点N.设EB = x,△DMF的面积为y,求y与x之间的函数表达式,并写出自变量x的取值范围.

答案:
过点$D$作$DG\perp AB$于点$G$。$\because EF\perp AB$,$\therefore\angle DGB=\angle NEB=\angle NEA = 90^{\circ}$。$\because$四边形$ABCD$是菱形,$\therefore AD = AB = 4$,$AB// CD$。又$\because\angle A = 60^{\circ}$,$\therefore\triangle ABD$为等边三角形。$\therefore AG = BG=\frac{1}{2}AB = 2$,$\angle ABD=\angle A = 60^{\circ}$。$\because AB// CD$,$\therefore\angle DNE=\angle NEB = 90^{\circ}$。又$\because\angle DGE=\angle GEN = 90^{\circ}$,$\therefore$四边形$DGEN$是矩形。$\therefore NE = DG=\sqrt{AD^{2}-AG^{2}}=\sqrt{4^{2}-2^{2}}=2\sqrt{3}$,$DN = GE = BG - BE = 2 - x$。$\because\angle DMN=\angle BME = 90^{\circ}-60^{\circ}=30^{\circ}$,$\angle DNM = 90^{\circ}$,$\therefore$易得$DM = 2DN = 2(2 - x)$。$\therefore MN=\sqrt{DM^{2}-DN^{2}}=\sqrt{[2(2 - x)]^{2}-(2 - x)^{2}}=\sqrt{3}(2 - x)$。$\because\angle F = 90^{\circ}-60^{\circ}=30^{\circ}=\angle DMN$,$\therefore DF = DM$。$\therefore FM = 2MN = 2\sqrt{3}(2 - x)$。$\therefore y=\frac{1}{2}FM\cdot DN=\frac{1}{2}\times2\sqrt{3}(2 - x)\cdot(2 - x)=\sqrt{3}(2 - x)^{2}=\sqrt{3}x^{2}-4\sqrt{3}x + 4\sqrt{3}$。$\because AG = BG = 2$,$\therefore$自变量$x$的取值范围是$0\leqslant x<2$
12.(2024·青阳三模改编)如图,在菱形ABCD中,$\angle B = 60^{\circ}$,$AB = 2$.动点P从点B出发,以每秒1个单位长度的速度沿折线BAC运动到点C,同时动点Q从点A出发,以相同速度沿折线ACD运动到点D,当一个点停止运动时,另一点也随之停止.设△APQ的面积为y,运动时间为x s,求y与x之间的函数表达式.

答案:
$\because$四边形$ABCD$是菱形,$\therefore AB = BC = AD = CD$,$\angle B=\angle D = 60^{\circ}$。$\therefore\triangle ABC$和$\triangle ADC$都是等边三角形。易得当$x = 0$或$x = 2$时不能构成三角形。分两种情况:①当$0<x<2$时,如图①,过点$Q$作$QH\perp AB$于点$H$,则$\angle AHQ = 90^{\circ}$。根据题意,得$BP = AQ = x$,则$AP = 2 - x$。$\because\triangle ABC$是等边三角形,$\therefore\angle BAC = 60^{\circ}$。在$Rt\triangle AHQ$中,$\because\angle AQH = 90^{\circ}-60^{\circ}=30^{\circ}$,$\therefore$易得$AH=\frac{1}{2}AQ=\frac{1}{2}x$。$\therefore HQ=\sqrt{AQ^{2}-AH^{2}}=\sqrt{x^{2}-(\frac{1}{2}x)^{2}}=\frac{\sqrt{3}}{2}x$。$\therefore y=\frac{1}{2}AP\cdot HQ=\frac{1}{2}(2 - x)\times\frac{\sqrt{3}}{2}x=-\frac{\sqrt{3}}{4}x^{2}+\frac{\sqrt{3}}{2}x$。②当$2<x\leqslant4$时,如图②,过点$Q$作$QN\perp AC$于点$N$。根据题意,得$AP = CQ = x - 2$。同①,可得$QN=\frac{\sqrt{3}}{2}(x - 2)$。$\therefore y=\frac{1}{2}AP\cdot QN=\frac{1}{2}(x - 2)\times\frac{\sqrt{3}}{2}(x - 2)=\frac{\sqrt{3}}{4}x^{2}-\sqrt{3}x+\sqrt{3}$。综上所述,$y$与$x$之间的函数表达式为$y=\begin{cases}-\frac{\sqrt{3}}{4}x^{2}+\frac{\sqrt{3}}{2}x(0<x<2)\\\frac{\sqrt{3}}{4}x^{2}-\sqrt{3}x+\sqrt{3}(2<x\leqslant4)\end{cases}$
$\because$四边形$ABCD$是菱形,$\therefore AB = BC = AD = CD$,$\angle B=\angle D = 60^{\circ}$。$\therefore\triangle ABC$和$\triangle ADC$都是等边三角形。易得当$x = 0$或$x = 2$时不能构成三角形。分两种情况:①当$0<x<2$时,如图①,过点$Q$作$QH\perp AB$于点$H$,则$\angle AHQ = 90^{\circ}$。根据题意,得$BP = AQ = x$,则$AP = 2 - x$。$\because\triangle ABC$是等边三角形,$\therefore\angle BAC = 60^{\circ}$。在$Rt\triangle AHQ$中,$\because\angle AQH = 90^{\circ}-60^{\circ}=30^{\circ}$,$\therefore$易得$AH=\frac{1}{2}AQ=\frac{1}{2}x$。$\therefore HQ=\sqrt{AQ^{2}-AH^{2}}=\sqrt{x^{2}-(\frac{1}{2}x)^{2}}=\frac{\sqrt{3}}{2}x$。$\therefore y=\frac{1}{2}AP\cdot HQ=\frac{1}{2}(2 - x)\times\frac{\sqrt{3}}{2}x=-\frac{\sqrt{3}}{4}x^{2}+\frac{\sqrt{3}}{2}x$。②当$2<x\leqslant4$时,如图②,过点$Q$作$QN\perp AC$于点$N$。根据题意,得$AP = CQ = x - 2$。同①,可得$QN=\frac{\sqrt{3}}{2}(x - 2)$。$\therefore y=\frac{1}{2}AP\cdot QN=\frac{1}{2}(x - 2)\times\frac{\sqrt{3}}{2}(x - 2)=\frac{\sqrt{3}}{4}x^{2}-\sqrt{3}x+\sqrt{3}$。综上所述,$y$与$x$之间的函数表达式为$y=\begin{cases}-\frac{\sqrt{3}}{4}x^{2}+\frac{\sqrt{3}}{2}x(0<x<2)\\\frac{\sqrt{3}}{4}x^{2}-\sqrt{3}x+\sqrt{3}(2<x\leqslant4)\end{cases}$
查看更多完整答案,请扫码查看