2025年学霸高考黑题数学人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年学霸高考黑题数学人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年学霸高考黑题数学人教版》

变式训练 4. (2025·湖南长沙模拟)已知非零等差数列$\{ a_{n}\}$的前$n$项和为$S_{n}$,且$a_{2}=4$,$a_{n}· a_{n+1}=4S_{n}$。
(1)求$\{ a_{n}\}$的通项公式;
(2)已知正项数列$\{ b_{n}\}$满足$b_{1}=\dfrac {1}{3}$,且$b_{n+1}$是$b_{n}$和$b_{n}b_{n+1}$的等差中项,求数列$\left\{ \left(\dfrac {1}{b_{n}}-1\right)· a_{n}\right\}$的前$n$项和$T_{n}$;
(3)在条件(2)下,记正项数列$\{ b_{n}\}$的前$n$项和为$M_{n}$,求证:$\dfrac {2}{3}\left[1-\left(\dfrac {1}{2}\right)^{n}\right]\leqslant M_{n} < \dfrac {5}{6}$。
答案: 变式训练4.
(1)解:设等差数列$\{a_n\}$的公差为$d$。因为$4S_n = a_n a_{n + 1}$,由$a_2 = 4$,得$a_1 + d = 4$,当$n = 1$时,$4S_1 = a_1 a_2$,即$4a_1 = 4a_1$,恒成立;当$n = 2$时,由$4S_2 = a_2 · a_3$,得$4(a_1 + a_2) = 4a_3$,得$4(a_1 + 4) = 4(a_1 + 2d)$,得$d = 2$。所以$a_1 = 2$,所以$a_n = a_1 + (n - 1)d = 2 + (n - 1) × 2 = 2n$。
(2)解:因为$b_{n + 1}$是$b_n$和$b_n b_{n + 1}$的等差中项,所以$2b_{n + 1} = b_n + b_n b_{n + 1}$。又$b_n > 0$,所以$\frac{1}{b_{n + 1}} - 2 = \frac{1}{b_n} - 1$,即$\frac{1}{b_{n + 1}} - 1 = 2(\frac{1}{b_n} - 1)$。又$b_1 = \frac{1}{3}$,所以$\frac{1}{b_1} - 1 = 2$,所以数列$\{\frac{1}{b_n} - 1\}$是首项为$2$,公比为$2$的等比数列,所以$\frac{1}{b_n} - 1 = 2^n$,即$b_n = \frac{1}{2^n + 1}$。令$c_n = (\frac{1}{b_n} - 1)a_n$,可知$c_n = 2^n · 2n = n · 2^{n + 1}$,所以$T_n = 1 × 2^2 + 2 × 2^3 + 3 × 2^4 + ·s + (n - 1) · 2^n + n · 2^{n + 1}$,$2T_n = 1 × 2^3 + 2 × 2^4 + ·s + (n - 1) · 2^{n + 1} + n · 2^{n + 2}$,两式相减得$-T_n = 2^2 + 2^3 + ·s + 2^{n + 1} - n · 2^{n + 2} = \frac{4(1 - 2^n)}{1 - 2} - n · 2^{n + 2} = -4 + (1 - n)2^{n + 2}$,所以$T_n = (n - 1) · 2^{n + 2} + 4$。
(3)证明:由
(2)可得$b_n = \frac{1}{2^n + 1} \geq \frac{1}{2^n + 2^n} = \frac{1}{2 · 2^n} = \frac{1}{3} × (\frac{1}{2})^{n - 1}$(当$n = 1$时取等号),所以$M_n \geq \frac{1}{3} × \frac{1 - (\frac{1}{2})^n}{1 - \frac{1}{2}} = \frac{2}{3}[1 - (\frac{1}{2})^n]$。因为$b_n = \frac{1}{2^n + 1} < \frac{1}{2^n}$,所以当$n = 1$时,$M_1 = \frac{1}{3} < \frac{5}{6}$;当$n \geq 2$时,$M_n < \frac{1}{3} + (\frac{1}{2})^2 + (\frac{1}{2})^3 + ·s + (\frac{1}{2})^n = \frac{1}{3} + \frac{\frac{1}{4}[1 - (\frac{1}{2})^{n - 1}]}{1 - \frac{1}{2}} = \frac{1}{3} + \frac{1}{2} - \frac{1}{2^n} = \frac{5}{6} - \frac{1}{2^n} < \frac{5}{6}$。
综上,$\frac{2}{3}[1 - (\frac{1}{2})^n] \leq M_n < \frac{5}{6}$成立。
变式训练 5. (2025·河南郑州模拟)若$b^{2} < ac$,则称$b$是$a$和$c$的减比中项。
(1)若$2$是$a$和$c$的减比中项,求$a^{2}+c^{2}$的取值范围。
(2)已知数列$\{ a_{n}\}$满足$a_{1}=1$,$a_{2}=1$,数列$\{ b_{n}\}$满足$b_{1}=2$,$b_{2}=2$,存在正数$m > 1$,使$\sqrt {m}a_{n+1}$是$a_{n+2}$和$a_{n}$的等比中项,且$\sqrt {m}b_{n+1}$是$b_{n+2}$和$b_{n}$的减比中项,$n\in \mathbf{N}^{*}$。
①证明:$\sqrt {a_{n+2}b_{n+1}}$是$a_{n+1}$和$b_{n+2}$的减比中项;
②记数列$\left\{ \dfrac {b_{n}-a_{n}}{b_{n+1}-a_{n+1}}\right\}$的前$n$项和为$S_{n}$,证明:$S_{n} < \dfrac {m}{m - 1}$。
答案: 变式训练5.
(1)解:若$2$是$a$和$c$的减比中项,则$2^2 < ac$,即$ac > 4$,$\therefore a^2 + c^2 \geq 2ac > 8$(当且仅当$a = c$时取等号),$\therefore a^2 + c^2$的取值范围是$(8, + \infty)$。
(2)①证明:$\because \sqrt{m}b_{n + 1}$是$b_{n + 2}$和$b_n$的减比中项,$\therefore (\sqrt{m}b_{n + 1})^2 < b_{n + 2} · b_n$,即$mb_{n + 1}^2 < b_{n + 2}b_n$。又$m$为正数,$\therefore \{b_n\}$为正项数列。$\sqrt{m}a_{n + 1}$是$a_{n + 2}$和$a_n$的等比中项,$\therefore (\sqrt{m}a_{n + 1})^2 = a_{n + 2}a_n$,即$ma_{n + 1}^2 = a_{n + 2}a_n$,$\therefore \{a_n\}$为正项数列。要证$\sqrt{a_{n + 2}b_{n + 1}}$是$a_{n + 1}$和$b_{n + 2}$的减比中项,只需证$(\sqrt{a_{n + 2}b_{n + 1}})^2 < a_{n + 1}b_{n + 2}$,即$a_{n + 2}b_{n + 1} < a_{n + 1}b_{n + 2}$。由$ma_{n + 1}^2 = a_{n + 2}a_n$得$\frac{a_{n + 2}}{a_{n + 1}} = m · \frac{a_{n + 1}}{a_n}$,所以$\frac{a_{n + 2}}{a_{n + 1}} = m^n · \frac{a_2}{a_1} = m^n$(因为$a_1 = a_2 = 1$)。由$mb_{n + 1}^2 < b_{n + 2}b_n$得$\frac{b_{n + 2}}{b_{n + 1}} > m · \frac{b_{n + 1}}{b_n}$,所以$\frac{b_{n + 2}}{b_{n + 1}} > m^n · \frac{b_2}{b_1} = m^n$(因为$b_1 = b_2 = 2$)。所以$\frac{a_{n + 2}b_{n + 1}}{a_{n + 1}b_{n + 2}} = \frac{a_{n + 2}}{a_{n + 1}} · \frac{b_{n + 1}}{b_{n + 2}} < m^n · \frac{1}{m^n} = 1$,即$a_{n + 2}b_{n + 1} < a_{n + 1}b_{n + 2}$,故$\sqrt{a_{n + 2}b_{n + 1}}$是$a_{n + 1}$和$b_{n + 2}$的减比中项。
②证明:由$ma_{n + 1}^2 = a_{n + 2}a_n$,$a_1 = a_2 = 1$,可得$a_n = m^{\frac{(n - 1)(n - 2)}{2}}$。由$mb_{n + 1}^2 < b_{n + 2}b_n$,$b_1 = b_2 = 2$,可得$\frac{b_{n + 2}}{b_{n + 1}} > m · \frac{b_{n + 1}}{b_n}$,则$\frac{b_{n + 1}}{b_n} > m^{n - 1} · \frac{b_2}{b_1} = m^{n - 1}$,所以$b_n > m^{\frac{(n - 1)(n - 2)}{2}} · b_1 = 2m^{\frac{(n - 1)(n - 2)}{2}}$。设$d_n = b_n - a_n$,则$\frac{d_n}{d_{n + 1}} = \frac{b_n - a_n}{b_{n + 1} - a_{n + 1}} < \frac{b_n}{b_{n + 1} - a_{n + 1}}$,又因为$b_{n + 1} > m^{n - 1}b_n$,$a_{n + 1} = m^{\frac{n(n - 1)}{2}}$,$a_n = m^{\frac{(n - 1)(n - 2)}{2}}$,所以$\frac{d_n}{d_{n + 1}} < \frac{1}{m^{n - 1} - \frac{a_{n + 1}}{b_n}} < \frac{1}{m^{n - 1} - 1}$(因为$\frac{a_{n + 1}}{b_n} < 1$),所以$S_n = \sum_{k=1}^n \frac{d_k}{d_{k + 1}} < 1 + \frac{1}{m} + ·s + \frac{1}{m^{n - 1}} = \frac{1 - \frac{1}{m^n}}{1 - \frac{1}{m}} = \frac{m(1 - \frac{1}{m^n})}{m - 1} < \frac{m}{m - 1}$。

查看更多完整答案,请扫码查看

关闭