2025年学霸高考黑题数学人教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年学霸高考黑题数学人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第17页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
典型例题1. (2025·浙江湖州一模)若$f(x)=(x - 2)^3 + 2(x - 2) + 2$,已知数列$\{a_n\}$中,首项$a_1=\frac{1}{20}$,$a_n = a_1 + \frac{a_2}{2} + \frac{a_3}{3} + ·s + \frac{a_n}{n}$,$n\in\mathbf{N}^*$,则$\sum_{i = 1}^{79}f(a_i)=$
158
.
答案:
典型例题1.158 解析:因为$a_n = a_1 + \frac{a_2}{2} + \frac{a_3}{3} + ·s + \frac{a_n}{n}, n \in \mathbf{N}^*$,所以$a_{n+1} = a_1 + \frac{a_2}{2} + \frac{a_3}{3} + ·s + \frac{a_n}{n} + \frac{a_{n+1}}{n+1}$. 所以$a_{n+1} = a_n + \frac{a_{n+1}}{n+1}$ 整理得$\frac{a_{n+1}}{n+1} = \frac{a_n}{n}$.
$n \in \mathbf{N}^*$,即$\left\{ \frac{a_n}{n} \right\}$是常数数列. 又$a_1 = \frac{1}{20}$,所以$\frac{a_n}{n} = \frac{a_1}{1} = \frac{1}{20}$,即$a_n = \frac{n}{20}$.
因为$f(x) = (x - 2)^3 + 2(x - 2) + 2$,所以$f(4 - x) = (4 - x - 2)^3 + 2(4 - x - 2) + 2 = -(x - 2)^3 - 2(x - 2) + 2$,所以$f(x) + f(4 - x) = 4$. 又$a_n = \frac{n}{20}$,所以$f(a_i) = f\left( \frac{i}{20} \right), i \in \mathbf{N}^*$,所以$\sum_{i=1}^{79} f(a_i) = f\left( \frac{1}{20} \right) + f\left( \frac{2}{20} \right) + ·s + f\left( \frac{78}{20} \right) + f\left( \frac{79}{20} \right)$,即$\sum_{i=1}^{79} f(a_i) = f\left( \frac{79}{20} \right) + f\left( \frac{78}{20} \right) + ·s + f\left( \frac{2}{20} \right) + f\left( \frac{1}{20} \right)$,所以$2 \sum_{i=1}^{79} f(a_i) = \left( f\left( \frac{1}{20} \right) + f\left( \frac{79}{20} \right) \right) + \left( f\left( \frac{2}{20} \right) + f\left( \frac{78}{20} \right) \right) + ·s + \left( f\left( \frac{79}{20} \right) + f\left( \frac{1}{20} \right) \right) = 4 × 79$,所以$\sum_{i=1}^{79} f(a_i) = 2 × 79 = 158$.
$n \in \mathbf{N}^*$,即$\left\{ \frac{a_n}{n} \right\}$是常数数列. 又$a_1 = \frac{1}{20}$,所以$\frac{a_n}{n} = \frac{a_1}{1} = \frac{1}{20}$,即$a_n = \frac{n}{20}$.
因为$f(x) = (x - 2)^3 + 2(x - 2) + 2$,所以$f(4 - x) = (4 - x - 2)^3 + 2(4 - x - 2) + 2 = -(x - 2)^3 - 2(x - 2) + 2$,所以$f(x) + f(4 - x) = 4$. 又$a_n = \frac{n}{20}$,所以$f(a_i) = f\left( \frac{i}{20} \right), i \in \mathbf{N}^*$,所以$\sum_{i=1}^{79} f(a_i) = f\left( \frac{1}{20} \right) + f\left( \frac{2}{20} \right) + ·s + f\left( \frac{78}{20} \right) + f\left( \frac{79}{20} \right)$,即$\sum_{i=1}^{79} f(a_i) = f\left( \frac{79}{20} \right) + f\left( \frac{78}{20} \right) + ·s + f\left( \frac{2}{20} \right) + f\left( \frac{1}{20} \right)$,所以$2 \sum_{i=1}^{79} f(a_i) = \left( f\left( \frac{1}{20} \right) + f\left( \frac{79}{20} \right) \right) + \left( f\left( \frac{2}{20} \right) + f\left( \frac{78}{20} \right) \right) + ·s + \left( f\left( \frac{79}{20} \right) + f\left( \frac{1}{20} \right) \right) = 4 × 79$,所以$\sum_{i=1}^{79} f(a_i) = 2 × 79 = 158$.
变式训练1. (2025·江西南昌期中)已知函数$f(x)$满足$f(x)=f(1 - x)$,$f'(x)$为$f(x)$的导函数,$g(x)=f'(x)+\frac{1}{3}$,$x\in\mathbf{R}$.若$a_n = g(\frac{n}{2026})$,则数列$\{a_n\}$的前$2025$项和为
675
.
答案:
变式训练1.675 解析:由题意知$f(x) = f(1 - x)$,所以$f'(x) = -f'(1 - x)$,即$f'(x) + f'(1 - x) = 0$. 又因为$g(x) = f'(x) + \frac{1}{3}$,所以$g(x) + g(1 - x) = f'(x) + f'(1 - x) + \frac{2}{3} = \frac{2}{3}$,所以$a_1 + a_2 + a_3 + ·s + a_{2025} = g\left( \frac{1}{2026} \right) + g\left( \frac{2}{2026} \right) + g\left( \frac{3}{2026} \right) + ·s + g\left( \frac{2025}{2026} \right)$ ①,$a_1 + a_2 + a_3 + ·s + a_{2025} = g\left( \frac{2025}{2026} \right) + g\left( \frac{2024}{2026} \right) + g\left( \frac{2023}{2026} \right) + ·s + g\left( \frac{1}{2026} \right)$ ②,将①②两式相加可得$a_1 + a_2 + a_3 + ·s + a_{2025} = \frac{2025 × \frac{2}{3}}{2} = \frac{2025}{3} = 675$.
典型例题2. (2023·新课标全国Ⅱ)已知$\{a_n\}$为等差数列,$b_n=\begin{cases}a_n - 6,n为奇数,\\2a_n,n为偶数,\end{cases}$记$S_n$,$T_n$分别为数列$\{a_n\}$,$\{b_n\}$的前$n$项和,$S_4 = 32$,$T_3 = 16$.
(1)求$\{a_n\}$的通项公式;
(2)证明:当$n>5$时,$T_n>S_n$.
(1)求$\{a_n\}$的通项公式;
(2)证明:当$n>5$时,$T_n>S_n$.
答案:
典型例题2.
(1) 解:设等差数列$\{ a_n \}$的公差为$d$,而$b_n = \begin{cases} a_n - 6, n 为奇数, \\ 2a_n, n 为偶数, \end{cases}$则$b_1 = a_1 - 6, b_2 = 2a_2 = 2a_1 + 2d, b_3 = a_3 - 6 = a_1 + 2d - 6$,于是$\begin{cases} S_4 = 4a_1 + 6d = 32, \\ T_4 = 4a_1 + 4d - 12 = 16, \end{cases}$解得$\begin{cases} a_1 = 5, \\ d = 2, \end{cases}$所以$a_n = a_1 + (n - 1)d = 2n + 3$,所以数列$\{ a_n \}$的通项公式是$a_n = 2n + 3$.
(2) 证明:方法一:由
(1) 知,$S_n = \frac{n(5 + 2n + 3)}{2} = n^2 + 4n$,$b_n = \begin{cases} 2n - 3, n 为奇数, \\ 4n + 6, n 为偶数, \end{cases}$当$n$为偶数时,$b_{n - 1} + b_n = 2(n - 1) - 3 + 4n + 6 = 6n + 1$,$T_n = \frac{13 + (6n + 1)}{2} × \frac{n}{2} = \frac{3}{2}n^2 + \frac{7}{2}n$. 当$n > 5$时,$T_n - S_n = \left( \frac{3}{2}n^2 + \frac{7}{2}n \right) - (n^2 + 4n) = \frac{1}{2}n(n - 1) > 0$,因此$T_n > S_n$;当$n$为奇数时,$T_n = T_{n - 1} + b_n = \frac{3}{2}(n - 1)^2 + \frac{7}{2}(n - 1) - [4(n + 1) + 6] = \frac{3}{2}n^2 + \frac{5}{2}n - 5$,当$n > 5$时,$T_n - S_n = \left( \frac{3}{2}n^2 + \frac{5}{2}n - 5 \right) - (n^2 + 4n) = \frac{1}{2}(n + 2)(n - 5) > 0$,因此$T_n > S_n$,所以当$n > 5$时,$T_n > S_n$.
方法二:由
(1) 知,$S_n = \frac{n(5 + 2n + 3)}{2} = n^2 + 4n$,$b_n = \begin{cases} 2n - 3, n 为奇数, \\ 4n + 6, n 为偶数, \end{cases}$当$n$为偶数时,$T_n = (b_1 + b_3 + ·s + b_{n - 1}) + (b_2 + b_4 + ·s + b_n) = \frac{-1 + 2(n - 1) - 3}{2} × \frac{n}{2} + \frac{14 + 4n + 6}{2} × \frac{n}{2} = \frac{3}{2}n^2 + \frac{7}{2}n$,当$n > 5$时,$T_n - S_n = \left( \frac{3}{2}n^2 + \frac{7}{2}n \right) - (n^2 + 4n) = \frac{1}{2}n(n - 1) > 0$,因此$T_n > S_n$;当$n$为奇数时,若$n \geq 3$,则$T_n = (b_1 + b_3 + ·s + b_n) + (b_2 + b_4 + ·s + b_{n - 1}) = \frac{-1 + 2n - 3}{2} × \frac{n + 1}{2} + \frac{14 + 4(n - 1) + 6}{2} × \frac{n - 1}{2} = \frac{3}{2}n^2 + \frac{5}{2}n - 5$,当$n > 5$时,$T_n - S_n = \left( \frac{3}{2}n^2 + \frac{5}{2}n - 5 \right) - (n^2 + 4n) = \frac{1}{2}(n + 2)(n - 5) > 0$,因此$T_n > S_n$,所以当$n > 5$时,$T_n > S_n$.
(1) 解:设等差数列$\{ a_n \}$的公差为$d$,而$b_n = \begin{cases} a_n - 6, n 为奇数, \\ 2a_n, n 为偶数, \end{cases}$则$b_1 = a_1 - 6, b_2 = 2a_2 = 2a_1 + 2d, b_3 = a_3 - 6 = a_1 + 2d - 6$,于是$\begin{cases} S_4 = 4a_1 + 6d = 32, \\ T_4 = 4a_1 + 4d - 12 = 16, \end{cases}$解得$\begin{cases} a_1 = 5, \\ d = 2, \end{cases}$所以$a_n = a_1 + (n - 1)d = 2n + 3$,所以数列$\{ a_n \}$的通项公式是$a_n = 2n + 3$.
(2) 证明:方法一:由
(1) 知,$S_n = \frac{n(5 + 2n + 3)}{2} = n^2 + 4n$,$b_n = \begin{cases} 2n - 3, n 为奇数, \\ 4n + 6, n 为偶数, \end{cases}$当$n$为偶数时,$b_{n - 1} + b_n = 2(n - 1) - 3 + 4n + 6 = 6n + 1$,$T_n = \frac{13 + (6n + 1)}{2} × \frac{n}{2} = \frac{3}{2}n^2 + \frac{7}{2}n$. 当$n > 5$时,$T_n - S_n = \left( \frac{3}{2}n^2 + \frac{7}{2}n \right) - (n^2 + 4n) = \frac{1}{2}n(n - 1) > 0$,因此$T_n > S_n$;当$n$为奇数时,$T_n = T_{n - 1} + b_n = \frac{3}{2}(n - 1)^2 + \frac{7}{2}(n - 1) - [4(n + 1) + 6] = \frac{3}{2}n^2 + \frac{5}{2}n - 5$,当$n > 5$时,$T_n - S_n = \left( \frac{3}{2}n^2 + \frac{5}{2}n - 5 \right) - (n^2 + 4n) = \frac{1}{2}(n + 2)(n - 5) > 0$,因此$T_n > S_n$,所以当$n > 5$时,$T_n > S_n$.
方法二:由
(1) 知,$S_n = \frac{n(5 + 2n + 3)}{2} = n^2 + 4n$,$b_n = \begin{cases} 2n - 3, n 为奇数, \\ 4n + 6, n 为偶数, \end{cases}$当$n$为偶数时,$T_n = (b_1 + b_3 + ·s + b_{n - 1}) + (b_2 + b_4 + ·s + b_n) = \frac{-1 + 2(n - 1) - 3}{2} × \frac{n}{2} + \frac{14 + 4n + 6}{2} × \frac{n}{2} = \frac{3}{2}n^2 + \frac{7}{2}n$,当$n > 5$时,$T_n - S_n = \left( \frac{3}{2}n^2 + \frac{7}{2}n \right) - (n^2 + 4n) = \frac{1}{2}n(n - 1) > 0$,因此$T_n > S_n$;当$n$为奇数时,若$n \geq 3$,则$T_n = (b_1 + b_3 + ·s + b_n) + (b_2 + b_4 + ·s + b_{n - 1}) = \frac{-1 + 2n - 3}{2} × \frac{n + 1}{2} + \frac{14 + 4(n - 1) + 6}{2} × \frac{n - 1}{2} = \frac{3}{2}n^2 + \frac{5}{2}n - 5$,当$n > 5$时,$T_n - S_n = \left( \frac{3}{2}n^2 + \frac{5}{2}n - 5 \right) - (n^2 + 4n) = \frac{1}{2}(n + 2)(n - 5) > 0$,因此$T_n > S_n$,所以当$n > 5$时,$T_n > S_n$.
查看更多完整答案,请扫码查看