2025年学霸高考黑题数学人教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年学霸高考黑题数学人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第24页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
变式训练 1. (2025·江苏八市三模)已知数列$\{ a_{n}\}$是等差数列,记其前$n$项和为$S_{n}$,且$S_{3}=a_{5}$,$a_{2n}=2a_{n}+\dfrac {1}{4}$。
(1)求数列$\{ a_{n}\}$的通项公式;
(2)将数列$\{ a_{n}\}$与$\{ \sqrt {S_{n}}\}$的所有项从小到大排列得到数列$\{ b_{n}\}$。
①求$\{ b_{n}\}$的前$20$项和;
②证明:$\dfrac {1}{b_{1}^{2}}+\dfrac {1}{b_{2}^{2}}+·s +\dfrac {1}{b_{n}^{2}} < 32$。
(1)求数列$\{ a_{n}\}$的通项公式;
(2)将数列$\{ a_{n}\}$与$\{ \sqrt {S_{n}}\}$的所有项从小到大排列得到数列$\{ b_{n}\}$。
①求$\{ b_{n}\}$的前$20$项和;
②证明:$\dfrac {1}{b_{1}^{2}}+\dfrac {1}{b_{2}^{2}}+·s +\dfrac {1}{b_{n}^{2}} < 32$。
答案:
变式训练1.
(1)解:设等差数列$\{a_n\}$的公差为$d$,由$S_3 = a_5$,得$3a_1 + 3d = a_1 + 4d$,即$2a_1 = d$,由$a_{2n}=2a_{n}+\dfrac {1}{4}$,取$n = 1$,得$a_2 = 2a_1 + \frac{1}{4} = a_1 + d$,即$a_1 = d - \frac{1}{4}$,解得$a_1 = \frac{1}{4}$,$d = \frac{1}{2}$,所以$a_n = \frac{1}{2}n - \frac{1}{4}$。
(2)①解:由
(1)知,$S_n = \frac{1}{4}n + \frac{n(n - 1)}{2} × \frac{1}{2} = \frac{1}{4}n^2$,所以$\sqrt{S_n} = \frac{1}{2}n = \frac{2n}{4}$。因为$a_n = \frac{1}{2}n - \frac{1}{4} = \frac{2n - 1}{4}$,所以$b_n = \frac{1}{4}n$,所以$\{b_n\}$的前20项和为$20 × \frac{1}{4} + \frac{20 × 19}{2} × \frac{1}{4} = \frac{105}{2}$。
②证明:因为$b_n^2 = \frac{1}{16}n^2$,所以$\frac{1}{b_n^2} = \frac{16}{n^2} < \frac{16}{n(n - 1)} = 16(\frac{1}{n - 1} - \frac{1}{n})(n \geq 2)$,当$n = 1$时,$\frac{1}{b_1^2} = 16 < 32$;当$n \geq 2$时,$\frac{1}{b_1^2} + \frac{1}{b_2^2} + ·s + \frac{1}{b_n^2} < 16 + 16[(\frac{1}{1} - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + ·s + (\frac{1}{n - 1} - \frac{1}{n})] = 32 - \frac{16}{n} < 32$。综上可
(1)解:设等差数列$\{a_n\}$的公差为$d$,由$S_3 = a_5$,得$3a_1 + 3d = a_1 + 4d$,即$2a_1 = d$,由$a_{2n}=2a_{n}+\dfrac {1}{4}$,取$n = 1$,得$a_2 = 2a_1 + \frac{1}{4} = a_1 + d$,即$a_1 = d - \frac{1}{4}$,解得$a_1 = \frac{1}{4}$,$d = \frac{1}{2}$,所以$a_n = \frac{1}{2}n - \frac{1}{4}$。
(2)①解:由
(1)知,$S_n = \frac{1}{4}n + \frac{n(n - 1)}{2} × \frac{1}{2} = \frac{1}{4}n^2$,所以$\sqrt{S_n} = \frac{1}{2}n = \frac{2n}{4}$。因为$a_n = \frac{1}{2}n - \frac{1}{4} = \frac{2n - 1}{4}$,所以$b_n = \frac{1}{4}n$,所以$\{b_n\}$的前20项和为$20 × \frac{1}{4} + \frac{20 × 19}{2} × \frac{1}{4} = \frac{105}{2}$。
②证明:因为$b_n^2 = \frac{1}{16}n^2$,所以$\frac{1}{b_n^2} = \frac{16}{n^2} < \frac{16}{n(n - 1)} = 16(\frac{1}{n - 1} - \frac{1}{n})(n \geq 2)$,当$n = 1$时,$\frac{1}{b_1^2} = 16 < 32$;当$n \geq 2$时,$\frac{1}{b_1^2} + \frac{1}{b_2^2} + ·s + \frac{1}{b_n^2} < 16 + 16[(\frac{1}{1} - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + ·s + (\frac{1}{n - 1} - \frac{1}{n})] = 32 - \frac{16}{n} < 32$。综上可
变式训练 2. (2025·江苏泰州模拟)设数列$\{ a_{n}\}$的前$n$项和为$S_{n}$,$2S_{n}=n^{2}+5n$。
(1)求$\{ a_{n}\}$的通项公式;
(2)设$b_{n}=n· 2^{n}$,求数列$\left\{ \dfrac {S_{n}+4}{a_{n}b_{n}}\right\}$的前$n$项和$T_{n}$;
(3)设$c_{n}=\dfrac {1}{\sqrt {a_{n}-2}}$,求证:$c_{1}+c_{2}+c_{3}+·s +c_{n} > 2\sqrt {n}-\dfrac {3}{2}$。
(1)求$\{ a_{n}\}$的通项公式;
(2)设$b_{n}=n· 2^{n}$,求数列$\left\{ \dfrac {S_{n}+4}{a_{n}b_{n}}\right\}$的前$n$项和$T_{n}$;
(3)设$c_{n}=\dfrac {1}{\sqrt {a_{n}-2}}$,求证:$c_{1}+c_{2}+c_{3}+·s +c_{n} > 2\sqrt {n}-\dfrac {3}{2}$。
答案:
变式训练2.
(1)解:$\because 2S_n = n^2 + 5n$,即$S_n = \frac{n^2 + 5n}{2}$,当$n = 1$时,$S_1 = \frac{1^2 + 5}{2} = 3$,$\therefore a_1 = S_1 = 3$;当$n \geq 2$时,$S_{n - 1} = \frac{(n - 1)^2 + 5(n - 1)}{2}$,$\therefore a_n = S_n - S_{n - 1} = \frac{n^2 + 5n}{2} - \frac{(n - 1)^2 + 5(n - 1)}{2} = n + 2$,而$a_1 = 3$也满足上式,$\therefore a_n = n + 2$。
(2)解:$\because S_n = \frac{n^2 + 5n}{2}$,$a_n = n + 2$,$b_n = n · 2^n$,
$\therefore \frac{S_n + 4}{a_n b_n} = \frac{\frac{n^2 + 5n}{2} + 4}{(n + 2) × n × 2^n} = \frac{n^2 + 5n + 8}{(n + 2) × n × 2^{n + 1}} = \frac{(n + 2)n + 3n + 8}{(n + 2) × n × 2^{n + 1}}$,
$\frac{1}{(n + 2) × n × 2^{n + 1}}[\frac{3n + 8}{(n + 2) × n} - \frac{1}{n} - \frac{1}{n + 1} - \frac{1}{n + 2}] = \frac{1}{4}[\frac{1}{n × 2^{n - 1}} - \frac{1}{(n + 1) × 2^n}]$,
$\therefore T_n = \frac{1}{4}[1 - (\frac{1}{2}) + \frac{1 - \frac{1}{2}}{1 × 2^0} - \frac{1}{3 × 2^2} + \frac{1}{2 × 2^1} - \frac{1}{4 × 2^3} + \frac{1}{3 × 2^2} - \frac{1}{5 × 2^4} + ·s +$
$\frac{1}{n × 2^{n - 1}} - \frac{1}{(n + 1) × 2^n}] = \frac{1}{4}[1 + \frac{\frac{1}{2}}{2} - \frac{1}{2} × \frac{\frac{1}{4}}{1 - \frac{1}{2}} + 1 + \frac{1}{4} - \frac{1}{(n + 1) · 2^n}]$,
$= \frac{1}{(n + 2) · 2^{n + 1}} = \frac{7}{4 × 2^3} - \frac{1}{(n + 1) · 2^n} · \frac{(n + 1) · 2^n}{(n + 2) · 2^{n + 1}}$,
(3)证明:由
(1)可得$c_n = \frac{1}{\sqrt{a_{n} - 2}} = \frac{1}{\sqrt{n}}$,因为$\frac{1}{\sqrt{k}} = \frac{2}{2\sqrt{k}} > \frac{2}{\sqrt{k} + \sqrt{k + 1}} = 2(\sqrt{k + 1} - \sqrt{k})(k \in N^*)$,所以$c_1 + c_2 + ·s + c_n = 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + ·s + \frac{1}{\sqrt{n}} > 2(\sqrt{2} - 1) + 2(\sqrt{3} - \sqrt{2}) + ·s + 2(\sqrt{n + 1} - \sqrt{n}) = 2\sqrt{n + 1} - 2$,当$n \geq 1$时,$2\sqrt{n + 1} - 2 - (2\sqrt{n} - \frac{3}{2}) = 2(\sqrt{n + 1} - \sqrt{n}) - \frac{1}{2} = \frac{2}{\sqrt{n + 1} + \sqrt{n}} - \frac{1}{2}$,当$n = 1$时,$2(\sqrt{2} - 1) - \frac{1}{2} = 2\sqrt{2} - \frac{5}{2} \approx 2.828 - 2.5 = 0.328 > 0$;当$n = 2$时,$2(\sqrt{3} - \sqrt{2}) - \frac{1}{2} \approx 2(1.732 - 1.414) - 0.5 = 0.636 - 0.5 = 0.136 > 0$;随着$n$增大,$\frac{2}{\sqrt{n + 1} + \sqrt{n}}$趋近于0,当$n$足够大时,$2\sqrt{n + 1} - 2 < 2\sqrt{n} - \frac{3}{2}$,但原证明过程可能存在笔误,正确证法应为:$\frac{1}{\sqrt{k}} = \frac{2}{2\sqrt{k}} > \frac{2}{\sqrt{k} + \sqrt{k - 1}} = 2(\sqrt{k} - \sqrt{k - 1})(k \geq 2)$,则$c_1 + c_2 + ·s + c_n = 1 + \sum_{k=2}^n \frac{1}{\sqrt{k}} > 1 + 2\sum_{k=2}^n (\sqrt{k} - \sqrt{k - 1}) = 1 + 2(\sqrt{n} - 1) = 2\sqrt{n} - 1 > 2\sqrt{n} - \frac{3}{2}$。
(1)解:$\because 2S_n = n^2 + 5n$,即$S_n = \frac{n^2 + 5n}{2}$,当$n = 1$时,$S_1 = \frac{1^2 + 5}{2} = 3$,$\therefore a_1 = S_1 = 3$;当$n \geq 2$时,$S_{n - 1} = \frac{(n - 1)^2 + 5(n - 1)}{2}$,$\therefore a_n = S_n - S_{n - 1} = \frac{n^2 + 5n}{2} - \frac{(n - 1)^2 + 5(n - 1)}{2} = n + 2$,而$a_1 = 3$也满足上式,$\therefore a_n = n + 2$。
(2)解:$\because S_n = \frac{n^2 + 5n}{2}$,$a_n = n + 2$,$b_n = n · 2^n$,
$\therefore \frac{S_n + 4}{a_n b_n} = \frac{\frac{n^2 + 5n}{2} + 4}{(n + 2) × n × 2^n} = \frac{n^2 + 5n + 8}{(n + 2) × n × 2^{n + 1}} = \frac{(n + 2)n + 3n + 8}{(n + 2) × n × 2^{n + 1}}$,
$\frac{1}{(n + 2) × n × 2^{n + 1}}[\frac{3n + 8}{(n + 2) × n} - \frac{1}{n} - \frac{1}{n + 1} - \frac{1}{n + 2}] = \frac{1}{4}[\frac{1}{n × 2^{n - 1}} - \frac{1}{(n + 1) × 2^n}]$,
$\therefore T_n = \frac{1}{4}[1 - (\frac{1}{2}) + \frac{1 - \frac{1}{2}}{1 × 2^0} - \frac{1}{3 × 2^2} + \frac{1}{2 × 2^1} - \frac{1}{4 × 2^3} + \frac{1}{3 × 2^2} - \frac{1}{5 × 2^4} + ·s +$
$\frac{1}{n × 2^{n - 1}} - \frac{1}{(n + 1) × 2^n}] = \frac{1}{4}[1 + \frac{\frac{1}{2}}{2} - \frac{1}{2} × \frac{\frac{1}{4}}{1 - \frac{1}{2}} + 1 + \frac{1}{4} - \frac{1}{(n + 1) · 2^n}]$,
$= \frac{1}{(n + 2) · 2^{n + 1}} = \frac{7}{4 × 2^3} - \frac{1}{(n + 1) · 2^n} · \frac{(n + 1) · 2^n}{(n + 2) · 2^{n + 1}}$,
(3)证明:由
(1)可得$c_n = \frac{1}{\sqrt{a_{n} - 2}} = \frac{1}{\sqrt{n}}$,因为$\frac{1}{\sqrt{k}} = \frac{2}{2\sqrt{k}} > \frac{2}{\sqrt{k} + \sqrt{k + 1}} = 2(\sqrt{k + 1} - \sqrt{k})(k \in N^*)$,所以$c_1 + c_2 + ·s + c_n = 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + ·s + \frac{1}{\sqrt{n}} > 2(\sqrt{2} - 1) + 2(\sqrt{3} - \sqrt{2}) + ·s + 2(\sqrt{n + 1} - \sqrt{n}) = 2\sqrt{n + 1} - 2$,当$n \geq 1$时,$2\sqrt{n + 1} - 2 - (2\sqrt{n} - \frac{3}{2}) = 2(\sqrt{n + 1} - \sqrt{n}) - \frac{1}{2} = \frac{2}{\sqrt{n + 1} + \sqrt{n}} - \frac{1}{2}$,当$n = 1$时,$2(\sqrt{2} - 1) - \frac{1}{2} = 2\sqrt{2} - \frac{5}{2} \approx 2.828 - 2.5 = 0.328 > 0$;当$n = 2$时,$2(\sqrt{3} - \sqrt{2}) - \frac{1}{2} \approx 2(1.732 - 1.414) - 0.5 = 0.636 - 0.5 = 0.136 > 0$;随着$n$增大,$\frac{2}{\sqrt{n + 1} + \sqrt{n}}$趋近于0,当$n$足够大时,$2\sqrt{n + 1} - 2 < 2\sqrt{n} - \frac{3}{2}$,但原证明过程可能存在笔误,正确证法应为:$\frac{1}{\sqrt{k}} = \frac{2}{2\sqrt{k}} > \frac{2}{\sqrt{k} + \sqrt{k - 1}} = 2(\sqrt{k} - \sqrt{k - 1})(k \geq 2)$,则$c_1 + c_2 + ·s + c_n = 1 + \sum_{k=2}^n \frac{1}{\sqrt{k}} > 1 + 2\sum_{k=2}^n (\sqrt{k} - \sqrt{k - 1}) = 1 + 2(\sqrt{n} - 1) = 2\sqrt{n} - 1 > 2\sqrt{n} - \frac{3}{2}$。
查看更多完整答案,请扫码查看