1. 三边________的三角形是相似三角形.
答案:
成比例
2. 如图所示,网格中相似的两个三角形是( )

A.①与③
B.②与③
C.①与④
D.③与④
A.①与③
B.②与③
C.①与④
D.③与④
答案:
A
3. $\triangle ABC$和$\triangle DEF$满足下列条件,其中能使$\triangle ABC$与$\triangle DEF$相似的是( )
A.$AB = c$,$AC = b$,$BC = a$,$DE = \sqrt{a}$,$EF = \sqrt{b}$,$DF = \sqrt{c}$
B.$AB = 1$,$AC = 1.5$,$BC = 2$,$DE = 12$,$EF = 8$,$DF = 1$
C.$AB = 3$,$AC = 4$,$BC = 6$,$DE = 12$,$EF = 8$,$DF = 6$
D.$AB = \sqrt{2}$,$AC = \sqrt{3}$,$BC = \sqrt{5}$,$DE = \sqrt{6}$,$EF = 3$,$DF = 3$
A.$AB = c$,$AC = b$,$BC = a$,$DE = \sqrt{a}$,$EF = \sqrt{b}$,$DF = \sqrt{c}$
B.$AB = 1$,$AC = 1.5$,$BC = 2$,$DE = 12$,$EF = 8$,$DF = 1$
C.$AB = 3$,$AC = 4$,$BC = 6$,$DE = 12$,$EF = 8$,$DF = 6$
D.$AB = \sqrt{2}$,$AC = \sqrt{3}$,$BC = \sqrt{5}$,$DE = \sqrt{6}$,$EF = 3$,$DF = 3$
答案:
C
4. 在$\triangle ABC$中,$AB:BC:CA = 2:3:4$,在$\triangle A_1B_1C_1$中,$A_1B_1 = 1$,$C_1A_1 = 2$,当$B_1C_1 =$______时,$\triangle ABC \backsim \triangle A_1B_1C_1$.
答案:
$\frac{3}{2}$
5. 如图,在$\triangle ABC$与$\triangle AED$中,$\frac{AB}{AE} = \frac{BC}{ED}$,要使$\triangle ABC$与$\triangle AED$相似,还需添加一个条件. 这个条件可以是________(只需填一个条件).

答案:
$∠B = ∠AED$
6. 如图,$\angle ADE = \angle B$,$\angle BAD = \angle CAE$,求证:$\triangle ADE \backsim \triangle ABC$.

答案:
证明:
∵∠BAD = ∠CAE,
∴∠BAD + ∠DAE = ∠CAE + ∠DAE,即∠BAE = ∠CAD。
又
∵∠ADE = ∠B,
∴△ADE∽△ABC(两角分别相等的两个三角形相似)。
∵∠BAD = ∠CAE,
∴∠BAD + ∠DAE = ∠CAE + ∠DAE,即∠BAE = ∠CAD。
又
∵∠ADE = ∠B,
∴△ADE∽△ABC(两角分别相等的两个三角形相似)。
7. 在$4 × 4$的正方形方格中,$\triangle ABC$和$\triangle DEF$的顶点都在边长为$1$的小正方形的顶点上.
(1)填空:$BC =$________,$DF =$________;
(2)$\triangle ABC$与$\triangle DEF$是否相似?说明理由.

(1)填空:$BC =$________,$DF =$________;
(2)$\triangle ABC$与$\triangle DEF$是否相似?说明理由.
答案:
答案略
查看更多完整答案,请扫码查看