2025年作业本江西教育出版社九年级数学全一册北师大版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年作业本江西教育出版社九年级数学全一册北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年作业本江西教育出版社九年级数学全一册北师大版》

8. 如图所示,在$□ ABCD$中,已知$EF // AB$,$DE : AE = 2 : 3$.若$\bigtriangleup BDC$的面积为$50$,则四边形$AEFB$的面积为
42
.
答案: 42
9. 如图所示,在$\bigtriangleup ABC$中,$D$,$E$分别是边$AB$,$AC$上的点,已知$\angle BDE + \angle C = 180^{\circ}$. 求证:$\bigtriangleup ADE \backsim \bigtriangleup ACB$.
答案: 证明:$\because \angle BDE + \angle C = 180^{\circ}$,$\angle BDE + \angle ADE = 180^{\circ}$,
$\therefore \angle ADE = \angle C$.
又$\because \angle A = \angle A$,
$\therefore \triangle ADE \backsim \triangle ACB$.
10. 如图所示,在平行四边形$ABCD$中,$P$是线段$BC$的中点.连接$AC$交$DP$于点$E$,连接$BE$并延长,交$CD$于点$F$.
(1)求证:$F$为$CD$的中点.
(2)若$BF \perp CD$,且$BE = \sqrt{2}CE$,求$\frac{AB}{BC}$的值.
答案:
(1)证明:$\because$ 四边形$ABCD$是平行四边形,
$\therefore AB // CD$,$AD // BC$,$AB = CD$,$AD = BC$,
$\therefore \triangle ADE \backsim \triangle CPE$,$\triangle ABE \backsim \triangle CFE$,
$\therefore \frac{AE}{CE} = \frac{AD}{CP}$,$\frac{AB}{CF} = \frac{AE}{CE}$,$\therefore \frac{AB}{CF} = \frac{AD}{CP}$.
$\because P$是线段$BC$的中点,
$\therefore CP = \frac{1}{2}BC = \frac{1}{2}AD$,$\therefore \frac{AB}{CF} = \frac{AD}{CP} = 2$,
$\therefore \frac{CD}{CF} = \frac{AB}{CF} = 2$,$\therefore F$为$CD$的中点.
(2)解:由
(1)知$\triangle ABE \backsim \triangle CFE$,
$\therefore \frac{BE}{EF} = \frac{AB}{CF} = 2$.
设$EF = a$,则$BE = 2a$,
$\therefore BF = BE + EF = 3a$.
$\because BE = \sqrt{2}CE$,$\therefore CE = \sqrt{2}a$.
$\because BF \perp CD$,$\therefore$ 在$Rt\triangle EFC$中,由勾股定理,得$FC = \sqrt{EC^2 - EF^2} = a$,
$\therefore$ 在$Rt\triangle BFC$中,由勾股定理,得$BC = \sqrt{BF^2 + FC^2} = \sqrt{10}a$,$AB = 2CF = 2a$,
$\therefore \frac{AB}{BC} = \frac{2a}{\sqrt{10}a} = \frac{\sqrt{10}}{5}$.

查看更多完整答案,请扫码查看

关闭