第11页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
(1)总量=
分量=
分量之和
分量=
总量 - 其他分量
答案:
分量之和;总量 - 其他分量
(2)创客班一共有53人,女生有21人,男生有多少人?
(
数量关系式:
(
创客班总人数
)是总量,(女生人数
)是分量。数量关系式:
男生人数=总人数-女生人数
答案:
创客班总人数是总量,女生人数是分量。
数量关系式:男生人数=总人数-女生人数
53-21=32(人)
答:男生有32人。
数量关系式:男生人数=总人数-女生人数
53-21=32(人)
答:男生有32人。
(3)金银花有158棵,菊花有239棵,金银花和菊花一共有多少棵?
数量关系式:
算式:
数量关系式:
金银花的数量 + 菊花的数量 = 金银花和菊花的总数量
算式:
158 + 239 = 397(棵)
答案:
解析:本题考查加法运算及数量关系式的建立。
数量关系式:金银花的数量 + 菊花的数量 = 金银花和菊花的总数量,
算式:$158 + 239 = 397$(棵),
答案:数量关系式为金银花的数量 + 菊花的数量 = 金银花和菊花的总数量;算式为$158 + 239 = 397$(棵)。
数量关系式:金银花的数量 + 菊花的数量 = 金银花和菊花的总数量,
算式:$158 + 239 = 397$(棵),
答案:数量关系式为金银花的数量 + 菊花的数量 = 金银花和菊花的总数量;算式为$158 + 239 = 397$(棵)。
(4)比507多200的数是(
707
),比638少150的数是(488
)。
答案:
解析:
第一个空,考查的是加法运算,需要将507与200相加来得到结果。
第二个空,考查的是减法运算,需要从638中减去150来得到结果。
答案:
(4)比507多200的数是
(707),比638少150的数是
(488)。
第一个空,考查的是加法运算,需要将507与200相加来得到结果。
第二个空,考查的是减法运算,需要从638中减去150来得到结果。
答案:
(4)比507多200的数是
(707),比638少150的数是
(488)。
(5)找规律,填一填。
475,480,485,(
970,980,990,(
475,480,485,(
490
),(495
),(500
)。970,980,990,(
1000
),(1010
),(1020
)。
答案:
解析:
这两道题都是等差数列的规律题。
对于第一组数475,480,485,可以看出每个数都比前一个数多5,这是一个公差为5的等差数列。
对于第二组数970,980,990,可以看出每个数都比前一个数多10,这是一个公差为10的等差数列。
答案:
(5)475,480,485,
(490),
(495),
(500)。
970,980,990,
(1000),
(1010),
(1020)。
这两道题都是等差数列的规律题。
对于第一组数475,480,485,可以看出每个数都比前一个数多5,这是一个公差为5的等差数列。
对于第二组数970,980,990,可以看出每个数都比前一个数多10,这是一个公差为10的等差数列。
答案:
(5)475,480,485,
(490),
(495),
(500)。
970,980,990,
(1000),
(1010),
(1020)。
(6)在○里填上“>”“<”或“=”。
452+24
148
452+24
>
475 167>
306-239148
<
500-231 484+218>
686
答案:
解析:本题考查三位数加减法和比较大小。
首先计算每个式子的值,然后再进行比较。
1. 对于 $452 + 24$ 和 $475$:
$452 + 24 = 476$
$476 > 475$
所以填 $>$。
2. 对于 $167$ 和 $306 - 239$:
$306 - 239 = 67$
$167 > 67$
所以填 $>$。
3. 对于 $148$ 和 $500 - 231$:
$500 - 231 = 269$
$148 < 269$
所以填 $<$。
4. 对于 $484 + 218$ 和 $686$:
$484 + 218 = 702$
$702 > 686$
所以填 $>$。
答案:$>$;$>$;$<$;$>$。
首先计算每个式子的值,然后再进行比较。
1. 对于 $452 + 24$ 和 $475$:
$452 + 24 = 476$
$476 > 475$
所以填 $>$。
2. 对于 $167$ 和 $306 - 239$:
$306 - 239 = 67$
$167 > 67$
所以填 $>$。
3. 对于 $148$ 和 $500 - 231$:
$500 - 231 = 269$
$148 < 269$
所以填 $<$。
4. 对于 $484 + 218$ 和 $686$:
$484 + 218 = 702$
$702 > 686$
所以填 $>$。
答案:$>$;$>$;$<$;$>$。
2. 火眼金睛辨对错。
(1)比356大85的数是271。(
(2)273比431小158。(
(3)上午卖出135支笔,下午卖出的支数比上午多45支,一共卖出180支。(
(1)比356大85的数是271。(
×
)(2)273比431小158。(
√
)(3)上午卖出135支笔,下午卖出的支数比上午多45支,一共卖出180支。(
×
)
答案:
解析:
(1) 需要计算比356大85的数,即356 + 85。
(2) 需要计算273与431的差,即431 - 273。
(3) 需要先计算下午卖出的笔的数量,即上午的135支加上多出的45支,然后求和。
答案:
(1) 356 + 85 = 441,所以比356大85的数是441,原题说法错误。
×
(2) 431 - 273 = 158,所以273比431小158,原题说法正确。
√
(3) 下午卖出的笔数为135 + 45 = 180支,一共卖出的笔数为135 + 180 = 315支,原题说法错误。
×
(1) 需要计算比356大85的数,即356 + 85。
(2) 需要计算273与431的差,即431 - 273。
(3) 需要先计算下午卖出的笔的数量,即上午的135支加上多出的45支,然后求和。
答案:
(1) 356 + 85 = 441,所以比356大85的数是441,原题说法错误。
×
(2) 431 - 273 = 158,所以273比431小158,原题说法正确。
√
(3) 下午卖出的笔数为135 + 45 = 180支,一共卖出的笔数为135 + 180 = 315支,原题说法错误。
×
(1)复兴号动车每小时行驶340千米,一列普通客运列车每小时行驶110千米。复兴号动车比这列普通客运列车每小时快(
A.230
B.450
C.330
230
)千米。A.230
B.450
C.330
答案:
解析:题目考查两个数的减法计算。
要求复兴号动车比普通客运列车每小时快多少千米,需要用复兴号动车的速度减去普通客运列车的速度。
计算过程为:$340 - 110 = 230$(千米)。
答案:A。
要求复兴号动车比普通客运列车每小时快多少千米,需要用复兴号动车的速度减去普通客运列车的速度。
计算过程为:$340 - 110 = 230$(千米)。
答案:A。
(2)要使□41-445的结果大于200,□里可以填的数字有(
A.4
B.3
C.2
B
)个。A.4
B.3
C.2
答案:
解析:
要使□41减去445的结果大于200,我们可以先将不等式表示出来:
□41 - 445 > 200。
为了找到□中可以填的数字,我们可以先将不等式进行简单的变形:
□41 > 645 (将445加到不等式的两边)。
考虑到□41是一个三位数,且百位上的数字是□,十位和个位分别是4和1,所以我们可以进一步分析□的取值范围。
由于645的十位是4,而□41的十位也是4,所以关键要看百位。为了使□41大于645,□(百位)必须大于6,因为只有当百位数字大于6时,整个数才会大于645。
现在,我们知道百位数字□可以取7、8、9(因为□是一位数,所以不能是10或更大的数)。
接下来,我们计算满足条件的数字个数:7、8、9,一共有3个数字。
答案:B(因为可以填的数字有3个:7、8、9)。
要使□41减去445的结果大于200,我们可以先将不等式表示出来:
□41 - 445 > 200。
为了找到□中可以填的数字,我们可以先将不等式进行简单的变形:
□41 > 645 (将445加到不等式的两边)。
考虑到□41是一个三位数,且百位上的数字是□,十位和个位分别是4和1,所以我们可以进一步分析□的取值范围。
由于645的十位是4,而□41的十位也是4,所以关键要看百位。为了使□41大于645,□(百位)必须大于6,因为只有当百位数字大于6时,整个数才会大于645。
现在,我们知道百位数字□可以取7、8、9(因为□是一位数,所以不能是10或更大的数)。
接下来,我们计算满足条件的数字个数:7、8、9,一共有3个数字。
答案:B(因为可以填的数字有3个:7、8、9)。
(3)一根绳子长708米,第一次用去321米,第二次用去128米,现在绳子比原来短了(
A.259
B.449
C.193
B
)米。A.259
B.449
C.193
答案:
分析:这个问题考查的是加减法的应用。
需要找出绳子现在比原来短了多少米。这可以通过将两次用去的绳子长度相加来得出。
首先,我们知道绳子原来长708米。
接着,第一次用去了321米,第二次用去了128米。
现在,我们要计算绳子总共用去了多少米。这可以通过简单的加法得出:
$321 + 128 = 449$(米)
所以,绳子现在比原来短了449米。
答案:B。
需要找出绳子现在比原来短了多少米。这可以通过将两次用去的绳子长度相加来得出。
首先,我们知道绳子原来长708米。
接着,第一次用去了321米,第二次用去了128米。
现在,我们要计算绳子总共用去了多少米。这可以通过简单的加法得出:
$321 + 128 = 449$(米)
所以,绳子现在比原来短了449米。
答案:B。
(4)小明买书花了280元,买文具比买书少花40元,小明一共花了多少钱?下列示意图能正确表示题意的是(

B
)。
答案:
B
查看更多完整答案,请扫码查看