2025年通城学典活页检测九年级数学下册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年通城学典活页检测九年级数学下册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年通城学典活页检测九年级数学下册人教版》

17. (广元中考)如图,在直角坐标系中,点A的坐标为(1,0),点B的坐标为(0,-3),点C在x轴上,且点C在点A右边,连接AB,BC. 若tan ∠ABC = $\frac{1}{3}$,则点C的坐标为________.

答案: $(\frac{9}{4},0)$
18. (齐齐哈尔中考)在△ABC中,AB = 3$\sqrt{6}$,AC = 6,∠B = 45°,则BC = ________.
答案: $3\sqrt{3}+3$或$3\sqrt{3}-3$
19. (6分)计算:
(1) $\frac{\sin 60^{\circ}-1}{\tan 60^{\circ}-2\tan 45^{\circ}}-\sqrt{3}\cos 30^{\circ}+\sqrt{2}\sin 45^{\circ}$; (2) $\frac{\sqrt{2}}{4}\sin 45^{\circ}+\cos ^{2}30^{\circ}-\frac{1}{2\tan 60^{\circ}}+2\sin 60^{\circ}$.
答案:
(1) 原式$=\frac{\frac{\sqrt{3}}{2}-1}{\sqrt{3}-2\times1}-\sqrt{3}\times\frac{\sqrt{3}}{2}+\sqrt{2}\times\frac{\sqrt{2}}{2}=\frac{1}{2}-\frac{3}{2}+1 = 0$
(2) 原式$=\frac{\sqrt{2}}{4}\times\frac{\sqrt{2}}{2}+(\frac{\sqrt{3}}{2})^2-\frac{1}{2\times\sqrt{3}}+2\times\frac{\sqrt{3}}{2}=\frac{1}{4}+\frac{3}{4}-\frac{\sqrt{3}}{6}+\sqrt{3}=1+\frac{5\sqrt{3}}{6}$
20. (8分)如图,AD是△ABC的中线,tan B = $\frac{1}{5}$,cos C = $\frac{\sqrt{2}}{2}$,AC = $\sqrt{2}$. 求:
(1) BC的长;
(2) ∠ADC的正弦值.
第20题
答案:

(1) 如图,过点$A$作$AH\perp BC$于点$H$. 在$Rt\triangle ACH$中,$\because\cos C=\frac{CH}{AC}=\frac{\sqrt{2}}{2},AC = \sqrt{2},\therefore CH = 1$. $\therefore$在$Rt\triangle ACH$中,由勾股定理,得$AH=\sqrt{AC^{2}-CH^{2}}=\sqrt{(\sqrt{2})^{2}-1^{2}} = 1$. 在$Rt\triangle ABH$中,$\because\tan B=\frac{AH}{BH}=\frac{1}{5},\therefore BH = 5$. $\therefore BC = BH + CH = 5 + 1 = 6$
(2) $\because AD$是$\triangle ABC$的中线,$\therefore BD = CD$. $\because BC = 6,CH = 1,\therefore CD = 3,DH = 2$. 在$Rt\triangle ADH$中,由勾股定理,得$AD=\sqrt{AH^{2}+DH^{2}}=\sqrt{1^{2}+2^{2}}=\sqrt{5}$. $\therefore\sin\angle ADH=\frac{AH}{AD}=\frac{1}{\sqrt{5}}=\frac{\sqrt{5}}{5}$. $\therefore\angle ADC$的正弦值为$\frac{\sqrt{5}}{5}$

21. (10分)(安徽中考)科技社团选择在学校游泳池进行一次光的折射实验,如图,光线自点B处发出,经水面点E折射到池底点A处. 已知BE与水平线的夹角α = 36.9°,点B到水面的距离BC = 1.20 m,点A处的水深为1.20 m,到池壁的水平距离AD = 2.50 m. 点B,C,D在同一条竖直线上,所有点都在同一竖直平面内. 记入射角为β,折射角为γ,求$\frac{\sin \beta}{\sin \gamma}$的值(结果取小数点后一位,参考数据:sin 36.9°≈0.60,cos 36.9°≈0.80,tan 36.9°≈0.75).
第21题
答案: 过点$E$作$EH\perp AD$于点$H$, 易得四边形$CDHE$是矩形,$\therefore EH = CD = 1.20\ m,DH = CE$. 由题意,得$\angle CEB=\alpha = 36.9^{\circ},\angle CBE=\beta,\therefore CE=\frac{BC}{\tan36.9^{\circ}}\approx\frac{1.20}{0.75}=1.60(m),AH = AD - DH = AD - CE = 2.50 - 1.60 = 0.90(m)$. $\therefore$在$Rt\triangle AEH$中,由勾股定理,得$AE=\sqrt{AH^{2}+EH^{2}}=\sqrt{0.90^{2}+1.20^{2}} = 1.50(m)$. $\therefore\sin\gamma=\frac{AH}{AE}=\frac{0.90}{1.50}=0.60$. $\because\sin\beta=\sin\angle CBE=\frac{CE}{BE}=\cos\angle CEB=\cos\alpha\approx0.80,\therefore\frac{\sin\beta}{\sin\gamma}=\frac{0.80}{0.60}\approx1.3$

查看更多完整答案,请扫码查看

关闭