2025年通城学典活页检测九年级数学下册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年通城学典活页检测九年级数学下册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年通城学典活页检测九年级数学下册人教版》

23. (8分)(营口中考)为了丰富学生的文化生活,学校利用假期组织学生到素质教育基地A和科技智能馆B参观学习. 如图,学生从学校出发,走到C处时,发现A处位于C处的北偏西25°方向上,B处位于C处的北偏西55°方向上,老师将学生分成甲、乙两组,甲组前往A处,乙组前往B处. 已知B处在A处的南偏西20°方向上,且这两处相距1 000米,求甲组学生比乙组学生大约多走多远(参考数据:$\sqrt{2}\approx1.41$,$\sqrt{6}\approx2.45$).
第23题
答案:
如图,过点$B$作$BE\perp AC$,垂足为$E$。由题意,得$\angle ACD = 25^{\circ}$,$\angle BCD = 55^{\circ}$,$\angle FAB = 20^{\circ}$,$AB = 1000$米,$CD// FA$,$\therefore\angle CAF=\angle ACD = 25^{\circ}$,$\therefore\angle BAC=\angle FAB+\angle CAF = 45^{\circ}$,$\angle ACB=\angle BCD-\angle ACD = 30^{\circ}$。在$Rt\triangle ABE$中,$\angle BAE = 45^{\circ}$,$\cos\angle BAE=\frac{AE}{AB}$,$\sin\angle BAE=\frac{BE}{AB}$,$\therefore AE = AB\cdot\cos45^{\circ}=1000\times\frac{\sqrt{2}}{2}=500\sqrt{2}$(米),$BE = AB\cdot\sin45^{\circ}=1000\times\frac{\sqrt{2}}{2}=500\sqrt{2}$(米)。在$Rt\triangle BCE$中,$\angle BCE = 30^{\circ}$,$\therefore BC = 2BE = 2\times500\sqrt{2}=1000\sqrt{2}$(米)。$\because\tan\angle BCE=\frac{BE}{CE}$,$\therefore CE=\frac{BE}{\tan30^{\circ}}=\frac{500\sqrt{2}}{\frac{\sqrt{3}}{3}}=500\sqrt{6}$(米),$\therefore AC = AE + CE=(500\sqrt{2}+500\sqrt{6})$米,$\therefore AC - BC = 500\sqrt{2}+500\sqrt{6}-1000\sqrt{2}=500\sqrt{6}-500\sqrt{2}\approx520$(米),$\therefore$甲组学生比乙组学生大约多走520米

24. (12分)(苏州中考)如图①所示为某种可调节支撑架,BC为水平固定杆,竖直固定杆AB⊥BC,活动杆AD可绕点A旋转,CD为液压可伸缩支撑杆,已知AB = 10 cm,BC = 20 cm,AD = 50 cm.
(1)如图②,当活动杆AD处于水平状态时,求可伸缩支撑杆CD的长度;
(2)如图③,当活动杆AD绕点A由水平状态按逆时针方向旋转角度$\alpha$,且$\tan\alpha = \frac{3}{4}$($\alpha$为锐角),求此时可伸缩支撑杆CD的长度.
第24题
答案:

(1) 如图①,过点$C$作$CE\perp AD$,垂足为$E$。易得四边形$ABCE$是矩形,$\therefore AB = CE = 10\ cm$,$BC = AE = 20\ cm$。$\because AD = 50\ cm$,$\therefore ED = AD - AE = 50 - 20 = 30(cm)$。在$Rt\triangle CED$中,由勾股定理,得$CD=\sqrt{CE^{2}+DE^{2}}=\sqrt{10^{2}+30^{2}}=10\sqrt{10}(cm)$,$\therefore$可伸缩支撑杆$CD$的长度为$10\sqrt{10}cm$
(2) 如图②,过点$D$作$DF\perp BC$交$BC$的延长线于点$F$,交$AD'$于点$G$。易得四边形$ABFG$是矩形,$\therefore AB = FG = 10\ cm$,$AG = BF$,$\angle AGF = 90^{\circ}$,$\therefore\angle AGD = 90^{\circ}$。在$Rt\triangle ADG$中,$\tan\alpha=\frac{DG}{AG}=\frac{3}{4}$,$\therefore$设$DG = 3x\ cm$,则$AG = 4x\ cm$。$\therefore$在$Rt\triangle ADG$中,由勾股定理,得$AD=\sqrt{AG^{2}+DG^{2}}=\sqrt{(4x)^{2}+(3x)^{2}}=5x(cm)$。$\because AD = 50\ cm$,$\therefore 5x = 50$,解得$x = 10$,$\therefore AG = 40\ cm$,$DG = 30\ cm$,$\therefore DF = DG + FG = 30 + 10 = 40(cm)$,$BF = AG = 40\ cm$。$\because BC = 20\ cm$,$\therefore CF = BF - BC = 40 - 20 = 20(cm)$。在$Rt\triangle CFD$中,由勾股定理,得$CD=\sqrt{CF^{2}+DF^{2}}=\sqrt{20^{2}+40^{2}}=20\sqrt{5}(cm)$,$\therefore$此时可伸缩支撑杆$CD$的长度为$20\sqrt{5}cm$

查看更多完整答案,请扫码查看

关闭