2025年全优标准卷八年级数学上册人教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年全优标准卷八年级数学上册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
22. (8 分)如图,在$\triangle ABC$中,$AC = BC$,$F$为$AB$的中点,$AC$的垂直平分线分别交$AC$,$CF$,$CB$于点$D$,$O$,$E$,连接$OA$,$OB$.
(1) 求证:$\triangle OBC$为等腰三角形;
(2) 若$\angle ACF = 25^{\circ}$,求$\angle BOE$的度数.

(1) 求证:$\triangle OBC$为等腰三角形;
(2) 若$\angle ACF = 25^{\circ}$,求$\angle BOE$的度数.
答案:
22.
(1)证明:$\because DE$为$AC$的垂直平分线,
$\therefore OC=OA$.
$\because AC=BC$,$F$为$AB$的中点,
$\therefore CF$为$AB$的垂直平分线,$\therefore OB=OA$,
$\therefore OB=OC$,$\therefore \triangle OBC$为等腰三角形.
(2)解:$\because AC=BC$,$F$为$AB$的中点,
$\therefore CF$为$\angle ACB$的平分线,
$\therefore \angle ACF=\angle BCF=\frac{1}{2}\angle ACB=25^{\circ}$,
$\therefore \angle ACB=50^{\circ}$,$\therefore \angle DEC=180^{\circ}-\angle EDC-\angle ACB=180^{\circ}-90^{\circ}-50^{\circ}=40^{\circ}$.
$\because \triangle OBC$为等腰三角形,
$\therefore \angle CBO=\angle BCF=25^{\circ}$,
$\therefore \angle BOE=\angle DEC-\angle CBO=40^{\circ}-25^{\circ}=15^{\circ}$.
(1)证明:$\because DE$为$AC$的垂直平分线,
$\therefore OC=OA$.
$\because AC=BC$,$F$为$AB$的中点,
$\therefore CF$为$AB$的垂直平分线,$\therefore OB=OA$,
$\therefore OB=OC$,$\therefore \triangle OBC$为等腰三角形.
(2)解:$\because AC=BC$,$F$为$AB$的中点,
$\therefore CF$为$\angle ACB$的平分线,
$\therefore \angle ACF=\angle BCF=\frac{1}{2}\angle ACB=25^{\circ}$,
$\therefore \angle ACB=50^{\circ}$,$\therefore \angle DEC=180^{\circ}-\angle EDC-\angle ACB=180^{\circ}-90^{\circ}-50^{\circ}=40^{\circ}$.
$\because \triangle OBC$为等腰三角形,
$\therefore \angle CBO=\angle BCF=25^{\circ}$,
$\therefore \angle BOE=\angle DEC-\angle CBO=40^{\circ}-25^{\circ}=15^{\circ}$.
23. (11 分)如图,在$\triangle ABC$中,$AB = 6$,$AC = 10$,$CF$平分$\angle ACB$,$D$是$BC$的中点,$E$是$AC$上一点,连接$DE$交$CF$于点$O$.
(1) 若$\triangle CDE$的周长与四边形$ABDE$的周长相等,求$AE$的长;
(2) 若$AC = BC$,$DE\perp BC$,$\angle ACB = \beta$,连接$OA$.
① 求证:点$O$在线段$AC$的垂直平分线上;
② 求$\angle AOE$的度数.(用含$\beta$的式子表示)

(1) 若$\triangle CDE$的周长与四边形$ABDE$的周长相等,求$AE$的长;
(2) 若$AC = BC$,$DE\perp BC$,$\angle ACB = \beta$,连接$OA$.
① 求证:点$O$在线段$AC$的垂直平分线上;
② 求$\angle AOE$的度数.(用含$\beta$的式子表示)
答案:
23.
(1)解:$\because D$是$BC$的中点,$\therefore BD=CD$.
$\because \triangle CDE$的周长与四边形$ABDE$的周长相等,
$\therefore CD+DE+CE=BD+DE+AB+AE$,
$\therefore CE=AB+AE$.
$\because AB=6$,$AC=10$,
$\therefore CE=6+10 - CE$,$\therefore CE=8$,
$\therefore AE=10 - CE=2$.
(2)①证明:如图,连接$OB$.
$\because DE\perp BC$,$D$是$BC$的中点,$\therefore OB=OC$.
$\because CF$平分$\angle ACB$,$AC=BC$,$\therefore CF$垂直平分$AB$,
$\therefore OA=OB$,$\therefore OA=OC$,
$\therefore$点$O$在线段$AC$的垂直平分线上.
②解:$\because DE\perp BC$,$\therefore \angle CDE=90^{\circ}$,$\therefore \angle CED=90^{\circ}-\angle ACB=90^{\circ}-\beta$.
$\because CF$平分$\angle ACB$,$\angle ACB=\beta$,
$\therefore \angle ACO=\frac{1}{2}\angle ACB=\frac{1}{2}\beta$.
$\because OA=OC$,$\therefore \angle CAO=\angle ACO=\frac{1}{2}\beta$,
$\therefore \angle AOE=\angle CEO-\angle CAO=90^{\circ}-\beta-\frac{1}{2}\beta=90^{\circ}-\frac{3}{2}\beta$.
23.
(1)解:$\because D$是$BC$的中点,$\therefore BD=CD$.
$\because \triangle CDE$的周长与四边形$ABDE$的周长相等,
$\therefore CD+DE+CE=BD+DE+AB+AE$,
$\therefore CE=AB+AE$.
$\because AB=6$,$AC=10$,
$\therefore CE=6+10 - CE$,$\therefore CE=8$,
$\therefore AE=10 - CE=2$.
(2)①证明:如图,连接$OB$.
$\because DE\perp BC$,$D$是$BC$的中点,$\therefore OB=OC$.
$\because CF$平分$\angle ACB$,$AC=BC$,$\therefore CF$垂直平分$AB$,
$\therefore OA=OB$,$\therefore OA=OC$,
$\therefore$点$O$在线段$AC$的垂直平分线上.
②解:$\because DE\perp BC$,$\therefore \angle CDE=90^{\circ}$,$\therefore \angle CED=90^{\circ}-\angle ACB=90^{\circ}-\beta$.
$\because CF$平分$\angle ACB$,$\angle ACB=\beta$,
$\therefore \angle ACO=\frac{1}{2}\angle ACB=\frac{1}{2}\beta$.
$\because OA=OC$,$\therefore \angle CAO=\angle ACO=\frac{1}{2}\beta$,
$\therefore \angle AOE=\angle CEO-\angle CAO=90^{\circ}-\beta-\frac{1}{2}\beta=90^{\circ}-\frac{3}{2}\beta$.
24. (12 分)已知:直线$AB// CD$,在三角尺$EFH$中,$\angle EFH = 90^{\circ}$,$\angle EHF = 60^{\circ}$.
(1) 如图 1,三角尺$EFH$的顶点$H$落在直线$CD$上,且$EH$与直线$AB$相交于点$G$,若$\angle 2 = 3\angle 1$,求$\angle 1$的度数;
(2) 如图 2,当三角尺$EFH$的顶点$F$落在直线$AB$上,且顶点$H$仍在直线$CD$上时,$EF$与直线$CD$相交于点$M$,试确定$\angle E$,$\angle AFE$,$\angle MHE$的数量关系;
(3) 如图 3,当三角尺$EFH$的顶点$F$落在直线$AB$上,且顶点$H$在$AB$,$CD$之间,而顶点$E$恰好落在直线$CD$上时,在线段$EH$上取点$P$,连接$FP$并延长交直线$CD$于点$T$,在线段$EF$上取点$K$,连接$PK$并延长交$\angle CEH$的平分线于点$Q$,若$\angle Q-\angle HFT = 15^{\circ}$,且$\angle EFT = \angle ETF$.
① 试探求$\angle HFT$与$\angle AFE$之间的数量关系,并说明理由;
② 求证:$PQ// FH$.

(1) 如图 1,三角尺$EFH$的顶点$H$落在直线$CD$上,且$EH$与直线$AB$相交于点$G$,若$\angle 2 = 3\angle 1$,求$\angle 1$的度数;
(2) 如图 2,当三角尺$EFH$的顶点$F$落在直线$AB$上,且顶点$H$仍在直线$CD$上时,$EF$与直线$CD$相交于点$M$,试确定$\angle E$,$\angle AFE$,$\angle MHE$的数量关系;
(3) 如图 3,当三角尺$EFH$的顶点$F$落在直线$AB$上,且顶点$H$在$AB$,$CD$之间,而顶点$E$恰好落在直线$CD$上时,在线段$EH$上取点$P$,连接$FP$并延长交直线$CD$于点$T$,在线段$EF$上取点$K$,连接$PK$并延长交$\angle CEH$的平分线于点$Q$,若$\angle Q-\angle HFT = 15^{\circ}$,且$\angle EFT = \angle ETF$.
① 试探求$\angle HFT$与$\angle AFE$之间的数量关系,并说明理由;
② 求证:$PQ// FH$.
答案:
24.
(1)解:$\because AB// CD$,$\therefore \angle1=\angle CHG$.
$\because \angle2=3\angle1$,$\therefore \angle2=3\angle CHG$.
$\because \angle CHG+\angle EHF+\angle2=180^{\circ}$,
$\therefore 4\angle CHG+60^{\circ}=180^{\circ}$,$\therefore \angle CHG=30^{\circ}$,
$\therefore \angle1=30^{\circ}$.
(2)解:$\angle AFE=\angle E+\angle MHE$,理由如下:
$\because AB// CD$,$\therefore \angle AFE=\angle CME$.
$\because \angle CME=\angle E+\angle MHE$,
$\therefore \angle AFE=\angle E+\angle MHE$.
(3)设$\angle AFE=x$,
则$\angle BFH=90^{\circ}-x$,$\angle EFB=180^{\circ}-x$.
①解:$\because AB// CD$,$\therefore \angle BFT=\angle ETF$.
$\because \angle EFT=\angle ETF$,
$\therefore \angle EFT=\angle BFT=\frac{1}{2}\angle EFB=90^{\circ}-\frac{1}{2}x$,
$\therefore \angle HFT=\angle BFT-\angle BFH=\frac{1}{2}x$,
即$\angle HFT=\frac{1}{2}\angle AFE$.
②证明:$\because \angle Q-\angle HFT=15^{\circ}$,
$\therefore \angle Q=15^{\circ}+\frac{1}{2}x$.
$\because AB// CD$,$\therefore \angle AFE+\angle CEF=180^{\circ}$.
$\therefore \angle CEF=180^{\circ}-x$,
$\therefore \angle CEH=\angle CEF+\angle FEH=180^{\circ}-x+30^{\circ}=210^{\circ}-x$.
$\because EQ$平分$\angle CEH$,
$\therefore \angle QEH=\frac{1}{2}\angle CEH=105^{\circ}-\frac{1}{2}x$.
$\because \angle Q+\angle QEH+\angle QPE=180^{\circ}$,
$\therefore 15^{\circ}+\frac{1}{2}x+105^{\circ}-\frac{1}{2}x+\angle QPE=180^{\circ}$,
$\therefore \angle QPE=60^{\circ}$.
$\because \angle H=60^{\circ}$,$\therefore \angle QPE=\angle H$,
$\therefore PQ// FH$.
(1)解:$\because AB// CD$,$\therefore \angle1=\angle CHG$.
$\because \angle2=3\angle1$,$\therefore \angle2=3\angle CHG$.
$\because \angle CHG+\angle EHF+\angle2=180^{\circ}$,
$\therefore 4\angle CHG+60^{\circ}=180^{\circ}$,$\therefore \angle CHG=30^{\circ}$,
$\therefore \angle1=30^{\circ}$.
(2)解:$\angle AFE=\angle E+\angle MHE$,理由如下:
$\because AB// CD$,$\therefore \angle AFE=\angle CME$.
$\because \angle CME=\angle E+\angle MHE$,
$\therefore \angle AFE=\angle E+\angle MHE$.
(3)设$\angle AFE=x$,
则$\angle BFH=90^{\circ}-x$,$\angle EFB=180^{\circ}-x$.
①解:$\because AB// CD$,$\therefore \angle BFT=\angle ETF$.
$\because \angle EFT=\angle ETF$,
$\therefore \angle EFT=\angle BFT=\frac{1}{2}\angle EFB=90^{\circ}-\frac{1}{2}x$,
$\therefore \angle HFT=\angle BFT-\angle BFH=\frac{1}{2}x$,
即$\angle HFT=\frac{1}{2}\angle AFE$.
②证明:$\because \angle Q-\angle HFT=15^{\circ}$,
$\therefore \angle Q=15^{\circ}+\frac{1}{2}x$.
$\because AB// CD$,$\therefore \angle AFE+\angle CEF=180^{\circ}$.
$\therefore \angle CEF=180^{\circ}-x$,
$\therefore \angle CEH=\angle CEF+\angle FEH=180^{\circ}-x+30^{\circ}=210^{\circ}-x$.
$\because EQ$平分$\angle CEH$,
$\therefore \angle QEH=\frac{1}{2}\angle CEH=105^{\circ}-\frac{1}{2}x$.
$\because \angle Q+\angle QEH+\angle QPE=180^{\circ}$,
$\therefore 15^{\circ}+\frac{1}{2}x+105^{\circ}-\frac{1}{2}x+\angle QPE=180^{\circ}$,
$\therefore \angle QPE=60^{\circ}$.
$\because \angle H=60^{\circ}$,$\therefore \angle QPE=\angle H$,
$\therefore PQ// FH$.
查看更多完整答案,请扫码查看