2025年全优标准卷八年级数学上册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年全优标准卷八年级数学上册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年全优标准卷八年级数学上册人教版》

17. (7 分)如图,在$\triangle ABC$中,$\angle A = 90^{\circ}$,$D$,$E$分别是$AB$,$AC$上的点,且$\angle ADE+\angle C = 90^{\circ}$.
(1) 求证:$DE// BC$;
(2) 若$EF$平分$\angle DEC$,$\angle B = 56^{\circ}$,求$\angle DEF$的度数.
答案: 17.
(1)证明:$\because$在$\triangle ABC$中,$\angle A=90^{\circ}$,
$\therefore \angle B+\angle C=90^{\circ}$.
$\because \angle ADE+\angle C=90^{\circ}$,$\therefore \angle B=\angle ADE$,
$\therefore DE// BC$.
(2)解:$\because \angle B=56^{\circ}$,$\angle B+\angle C=90^{\circ}$,
$\therefore \angle C=90^{\circ}-\angle B=34^{\circ}$.

(1)知$DE// BC$,$\therefore \angle DEC+\angle C=180^{\circ}$,
$\therefore \angle DEC=180^{\circ}-\angle C=180^{\circ}-34^{\circ}=146^{\circ}$.
$\because EF$平分$\angle DEC$,
$\therefore \angle DEF=\frac{1}{2}\angle DEC=\frac{1}{2}×146^{\circ}=73^{\circ}$.
18. (7 分)如图,点$E$,$C$,$D$,$A$在同一条直线上,$AB// DF$,$AB = DE$,$\angle B = \angle E$.
(1) 求证:$\triangle ABC\cong\triangle DEF$;
(2) 若$AB = 8$,$CD = 2$,求$EC$的长度.
答案: 18.
(1)证明:$\because AB// DF$,$\therefore \angle A=\angle FDE$.
在$\triangle ABC$与$\triangle DEF$中,$\begin{cases} \angle A=\angle FDE,\\AB=DE,\\\angle B=\angle E, \end{cases}$
$\therefore \triangle ABC\cong\triangle DEF(ASA)$.
(2)解:由
(1)知$\triangle ABC\cong\triangle DEF$,$\therefore AB=DE=8$.
$\because CD=2$,$\therefore CE=DE - CD=8 - 2=6$.
19. (8 分)如图,在$\triangle ABC$中,$AD$是高,$AE$,$BF$是角平分线,$AE$交$BF$于点$O$,$\angle BAC = 80^{\circ}$,$\angle C = 70^{\circ}$.
(1) 求$\angle AOB$的大小;
(2) 若$CD = 2$,$AD = 5$,求$\triangle AEC$的面积.
答案: 19.解:
(1)$\because \angle BAC=80^{\circ}$,$\angle C=70^{\circ}$,
$\therefore \angle ABC=180^{\circ}-80^{\circ}-70^{\circ}=30^{\circ}$.
$\because AE$,$BF$是角平分线,
$\therefore \angle BAO=\frac{1}{2}\angle BAC=40^{\circ}$,
$\angle ABO=\frac{1}{2}\angle ABC=15^{\circ}$,
$\therefore \angle AOB=180^{\circ}-15^{\circ}-40^{\circ}=125^{\circ}$.
(2)$\because \angle BAO=40^{\circ}$,$\angle ABC=30^{\circ}$,
$\therefore \angle AEC=30^{\circ}+40^{\circ}=70^{\circ}=\angle C$.
$\because AD$是高,$\therefore ED=DC=2$,
$\therefore EC=2DC=4$,
$\therefore \triangle AEC$的面积=$\frac{1}{2}EC· AD=\frac{1}{2}×4×5=10$.
20. (8 分)如图,在$\triangle ABC$中,$D$是边$BC$延长线上一点,$CD = AB$,过点$C$作$CE// AB$,且$CE = BC$,连接$DE$并延长,分别交$AC$,$AB$于点$F$,$G$.
(1) 求证:$\triangle ABC\cong\triangle DCE$;
(2) 若$\angle B = 48^{\circ}$,$\angle D = 23^{\circ}$,求$\angle FCD$的度数.
答案:
20.
(1)证明:$\because CE// AB$,$\therefore \angle B=\angle DCE$.

在$\triangle ABC$和$\triangle DCE$中,$\begin{cases} AB=DC,\\\angle B=\angle DCE,\\CB=EC, \end{cases}$
$\therefore \triangle ABC\cong\triangle DCE(SAS)$.
(2)解:由
(1)知$\triangle ABC\cong\triangle DCE$,
$\therefore \angle A=\angle D=23^{\circ}$,
$\therefore \angle FCD=\angle A+\angle B=23^{\circ}+48^{\circ}=71^{\circ}$.
21. (8 分)如图,在$\triangle ABC$中,$\angle ACB = 50^{\circ}$,$\angle BAC = 105^{\circ}$,$CD$为$\triangle ABC$的角平分线,$AE\perp CD$于点$E$.求证:$AB = 2CE$.
答案: 21.证明:如图,过点$A$作$AG// BC$交$CD$的延长线于点$G$.
$\because \angle ACB=50^{\circ}$,$\angle BAC=105^{\circ}$,
$\therefore \angle B=180^{\circ}-50^{\circ}-105^{\circ}=25^{\circ}$.
$\because \angle ACB=50^{\circ}$,$CD$为$\triangle ABC$的角平分线,
$\therefore \angle ACD=\angle BCD=\frac{1}{2}\angle ACB=\frac{1}{2}×50^{\circ}=25^{\circ}$.
$\because AG// BC$,
$\therefore \angle G=\angle BCD=25^{\circ}$,$\angle GAD=\angle B=25^{\circ}$.
$\because \angle B=\angle BCD=25^{\circ}$,$\angle GAD=\angle G=25^{\circ}$,
$\therefore CD=BD$,$AD=GD$,$\therefore AB=CG$.
$\because \angle ACG=\angle G=25^{\circ}$,$\therefore AG=AC$.
又$AE\perp CD$,$\therefore CE=GE=\frac{1}{2}CG$,$\therefore CG=2CE$,
$\therefore AB=2CE$.

查看更多完整答案,请扫码查看

关闭