1. 如图,在$\triangle ABC$中,$AD$是角平分线,$\angle BAC = 60^{\circ}$,$\angle C = 80^{\circ}$,$E$是边$AB$上一动点.若$\triangle BDE$是直角三角形,则$\angle ADE$的度数是




60°或20°
.
答案:
1.60°或20°
2. 如图,在$\triangle ABC$中,$\angle ABC = 62^{\circ}$,$BD$是角平分线,$CE$是高,$BD$与$CE$相交于点$O$,则$\angle BOC$的度数是
121°
.
答案:
2.121°
3. 如图,在$\triangle ABC$中,$\angle A = 60^{\circ}$,$\angle B = 80^{\circ}$,$CD$是$\angle ACB$的平分线,$DE\perp AC$,垂足为$E$,$EF// CD$交$AB$于点$F$,则$\angle DEF$的度数是
70°
.
答案:
3.70°
4. 如图,在$\triangle ABC$中,$\angle B = 25^{\circ}$,$\angle BAC = 31^{\circ}$,$AD\perp BC$,交$BC$的延长线于点$D$,$CE$平分$\angle ACD$,交$AD$于点$E$,则$\angle AEC$的度数是
118°
.
答案:
4.118°
5. 如图,在$\triangle ABC$中,$\angle B = 2\angle C$,$AE$平分$\angle BAC$交$BC$于点$E$,$FE\perp AE$,垂足为$E$.求证:$\angle C = 2\angle FEC$.

答案:
5.证明:设∠C=x,则∠B=2∠C=2x,
∴∠BAC=180°−∠B−∠C=180°−3x.
∵AE平分∠BAC,
∴∠BAE=$\frac{1}{2}$∠BAC=90°−$\frac{3}{2}$x.又∠AEC=∠AEF+∠FEC=∠BAE+∠B,
∴90°+∠FEC=90°−$\frac{3}{2}$x+2x,
∴∠FEC=$\frac{1}{2}$x,
∴∠C=2∠FEC.
∴∠BAC=180°−∠B−∠C=180°−3x.
∵AE平分∠BAC,
∴∠BAE=$\frac{1}{2}$∠BAC=90°−$\frac{3}{2}$x.又∠AEC=∠AEF+∠FEC=∠BAE+∠B,
∴90°+∠FEC=90°−$\frac{3}{2}$x+2x,
∴∠FEC=$\frac{1}{2}$x,
∴∠C=2∠FEC.
查看更多完整答案,请扫码查看