7. 如图,在△ABC中,∠ABC=2∠C,AD⊥BC于点D,BD=4,CD=16,求AB的长.

答案:
7.解:如图,在DC上截取ED=BD,连接AE.
∵AD⊥BC,
∴AB=AE,
∴∠AEB=∠ABC=2∠C.又∠AEB=∠EAC+∠C,
∴∠EAC=∠C,
∴CE=AE=AB,
∴AB=CE=CD−ED=CD−BD=12.
7.解:如图,在DC上截取ED=BD,连接AE.
∵AD⊥BC,
∴AB=AE,
∴∠AEB=∠ABC=2∠C.又∠AEB=∠EAC+∠C,
∴∠EAC=∠C,
∴CE=AE=AB,
∴AB=CE=CD−ED=CD−BD=12.
8. 如图,在△ABC中,∠ABC=2∠C,AD平分∠BAC交BC于点D.求证:△ACD与△ABD的周长差等于线段CD的长.

答案:
8.证明:如图,延长AB至点E,使得BE=BD,连接DE,则∠E=∠BDE,∠ABC=∠E+∠BDE=2∠E.
∵∠ABC=2∠C,
∴∠E=∠C.又∠EAD=∠CAD,AD=AD,
∴△ADE≌△ADC(AAS),
∴AC=AE=AB+BE=AB+BD,
∴C△ACD=AC+AD+CD=AB+BD+AD+CD,
∴C△ACD=C△ABD+CD,即C△ACD−C△ABD=CD.
8.证明:如图,延长AB至点E,使得BE=BD,连接DE,则∠E=∠BDE,∠ABC=∠E+∠BDE=2∠E.
∵∠ABC=2∠C,
∴∠E=∠C.又∠EAD=∠CAD,AD=AD,
∴△ADE≌△ADC(AAS),
∴AC=AE=AB+BE=AB+BD,
∴C△ACD=AC+AD+CD=AB+BD+AD+CD,
∴C△ACD=C△ABD+CD,即C△ACD−C△ABD=CD.
9. 如图,在四边形ABCD中,AC,BD相交于点E,且E为BD的中点,∠BAC=2∠ACD,AE=4,CE=8,求AB的长.

答案:
9.解:如图,延长CA至点F,使得AF=AB,连接BF,
∴∠F=∠ABF、∠BAC=∠F+∠ABF=2∠F.
∵∠BAC=2∠ACD,
∴∠F=∠ECD.又BE=DE,∠BEF=∠DEC,
∴△BEF≌△DEC(AAS),
∴FE=CE=8,
∴AB=AF=FE−AE=8−4=4.
9.解:如图,延长CA至点F,使得AF=AB,连接BF,
∴∠F=∠ABF、∠BAC=∠F+∠ABF=2∠F.
∵∠BAC=2∠ACD,
∴∠F=∠ECD.又BE=DE,∠BEF=∠DEC,
∴△BEF≌△DEC(AAS),
∴FE=CE=8,
∴AB=AF=FE−AE=8−4=4.
查看更多完整答案,请扫码查看