3. 如图,在$\triangle ABC$中,$\angle ABC = 90^{\circ}$,$CD\perp AC$,且$CD = AC$,连接$BD$。若$\triangle BCD$的面积为$\frac{9}{2}$,求$BC$的长。

答案:
3.解:如图,过点D作DE⊥BC,交BC的延长线于点E.
∵∠ABC = 90°,CD⊥AC,
∴∠ACB + ∠A = ∠ACB + ∠ECD = 90°,
∴∠A = ∠ECD.又∠ABC = ∠E = 90°,AC = CD,
∴△ABC ≌ △CED(AAS),
∴ED = BC.
∵S△BCD = $\frac{1}{2}$BC·ED = $\frac{1}{2}$BC² = $\frac{9}{2}$,
∴BC² = 9,BC = 3.
3.解:如图,过点D作DE⊥BC,交BC的延长线于点E.
∵∠ABC = 90°,CD⊥AC,
∴∠ACB + ∠A = ∠ACB + ∠ECD = 90°,
∴∠A = ∠ECD.又∠ABC = ∠E = 90°,AC = CD,
∴△ABC ≌ △CED(AAS),
∴ED = BC.
∵S△BCD = $\frac{1}{2}$BC·ED = $\frac{1}{2}$BC² = $\frac{9}{2}$,
∴BC² = 9,BC = 3.
4. 如图,在$\triangle ABC$中,$\angle BAC = 90^{\circ}$,$AB = AC$,且$B(-3,4)$,$C(4,0)$,求点$A$的坐标。

答案:
4.解:如图,过点A作直线l//x轴,过点B作BM⊥l于点M,过点C作CN⊥l于点N.易得△ACN ≌ △BAM(AAS或ASA),
∴AN = BM,CN = AM.设A(x_A,y_A),则AN = 4 - x_A,BM = y_A - 4,AM = x_A - (-3),CN = y_A,
∴$\begin{cases} 4 - x_A = y_A - 4, \\ y_A = x_A - (-3), \end{cases}$ 解得 $\begin{cases} x_A = \frac{5}{2}, \\ y_A = \frac{11}{2}, \end{cases}$
∴点A的坐标为($\frac{5}{2}$,$\frac{11}{2}$).
4.解:如图,过点A作直线l//x轴,过点B作BM⊥l于点M,过点C作CN⊥l于点N.易得△ACN ≌ △BAM(AAS或ASA),
∴AN = BM,CN = AM.设A(x_A,y_A),则AN = 4 - x_A,BM = y_A - 4,AM = x_A - (-3),CN = y_A,
∴$\begin{cases} 4 - x_A = y_A - 4, \\ y_A = x_A - (-3), \end{cases}$ 解得 $\begin{cases} x_A = \frac{5}{2}, \\ y_A = \frac{11}{2}, \end{cases}$
∴点A的坐标为($\frac{5}{2}$,$\frac{11}{2}$).
5. 如图,$D$,$A$,$E$三点共线,且$\angle D=\angle BAC=\angle E$,$AB = AC$。求证:$DE = BD + CE$。

答案:
5.证明:
∵∠BAE = ∠BAC + ∠EAC = ∠D + ∠DBA,∠D = ∠BAC,
∴∠DBA = ∠EAC.又∠D = ∠E,AB = CA,
∴△ADB ≌ △CEA(AAS),
∴BD = AE,AD = CE,
∴DE = AD + AE = BD + CE.
∵∠BAE = ∠BAC + ∠EAC = ∠D + ∠DBA,∠D = ∠BAC,
∴∠DBA = ∠EAC.又∠D = ∠E,AB = CA,
∴△ADB ≌ △CEA(AAS),
∴BD = AE,AD = CE,
∴DE = AD + AE = BD + CE.
查看更多完整答案,请扫码查看