6. 如图,在$\triangle ABC$中,$AB = AC$,$AB>BC$,点$F$在$BC$边上,且$CF = 2BF$,点$D$,$E$在线段$AF$上,$\angle ADB=\angle AEC = 130^{\circ}$,$\angle BAC = 50^{\circ}$。若$\triangle ABC$的面积为$18$,求图中两个阴影三角形的面积和。

答案:
6.解:
∵∠AEC = 130°,
∴∠CEF = 50°,
∴∠EAC + ∠ACE = 50°.
∵∠BAC = ∠EAC + ∠BAD = 50°,
∴∠BAD = ∠ACE.又∠ADB = ∠CEA = 130°,AB = CA,
∴△ADB ≌ △CEA(AAS),
∴S△ACE + S△BDF = S△BAD + S△BDF = S△ABF.又CF = 2BF,
∴S△ACE + S△BDF = S△ABF = $\frac{1}{3}$S△ABC = $\frac{1}{3}$×18 = 6.
∵∠AEC = 130°,
∴∠CEF = 50°,
∴∠EAC + ∠ACE = 50°.
∵∠BAC = ∠EAC + ∠BAD = 50°,
∴∠BAD = ∠ACE.又∠ADB = ∠CEA = 130°,AB = CA,
∴△ADB ≌ △CEA(AAS),
∴S△ACE + S△BDF = S△BAD + S△BDF = S△ABF.又CF = 2BF,
∴S△ACE + S△BDF = S△ABF = $\frac{1}{3}$S△ABC = $\frac{1}{3}$×18 = 6.
1. 如图,在$\triangle ABC$中,$AB = AC$,$\angle A = 50^{\circ}$,$P$为$\triangle ABC$内一点,且$\angle PBC = \angle PCA$,则$\angle BPC$的度数是

115°
.
答案:
1.115°
2. 如图,$O$是四边形$ABCD$内一点,$OB = OC = OD$,$\angle BCD = \angle BAD = 75^{\circ}$,则$\angle ADO + \angle ABO$的度数是

135°
.
答案:
2.135°
3. 如图,点$K$,$B$,$C$分别在$GH$,$GA$,$KA$上,且$AB = AC$,$BG = BH$,$KA = KG$,则$\angle A$的度数是

36°
.
答案:
3.36°
4. 如图,在$\triangle ABC$中,$\angle ABC = 63^{\circ}$,点$D$,$E$分别在边$BC$,$AC$上,且$AB = AD = DE = EC$,则$\angle C$的度数是

21°
.
答案:
4.21°
5. 如图,在$\triangle ABC$中,$AB = AC$,$\angle A = \alpha$.
(1)如图①,若$DE \perp AB$于点$E$,$FD \perp BC$于点$D$,则$\angle EDF =$
(2)如图②,若$BD = CF$,$CD = BE$,则$\angle EDF =$

(1)如图①,若$DE \perp AB$于点$E$,$FD \perp BC$于点$D$,则$\angle EDF =$
90°−$\frac{1}{2}$α
;(2)如图②,若$BD = CF$,$CD = BE$,则$\angle EDF =$
90°−$\frac{1}{2}$α
.(用含$\alpha$的代数式表示)
答案:
5.
(1)90°−$\frac{1}{2}$α
(2)90°−$\frac{1}{2}$α
(1)90°−$\frac{1}{2}$α
(2)90°−$\frac{1}{2}$α
6. 如图,在$\triangle ABC$中,$AB = AC$,$\angle A = \alpha$.
(1)如图①,若$BE = BD$,$CD = CF$,则$\angle EDF =$
(2)如图②,若$BD = DE$,$DC = DF$,则$\angle EDF =$

(1)如图①,若$BE = BD$,$CD = CF$,则$\angle EDF =$
90°−$\frac{1}{2}$α
;(2)如图②,若$BD = DE$,$DC = DF$,则$\angle EDF =$
180°−2α
.(用含$\alpha$的代数式表示)
答案:
6.
(1)90°−$\frac{1}{2}$α
(2)180°−2α
(1)90°−$\frac{1}{2}$α
(2)180°−2α
查看更多完整答案,请扫码查看