24. 如图,将四边形纸片 ABCD 沿过点 A 的直线折叠,使点 B 落在 CD 上的点 Q 处,折痕为 AP;再将$△PCQ,△ADQ$分别沿 PQ、AQ 折叠,此时点 C、D 落在 AP 上的同一点 R 处,求$∠PAQ$的度数.

答案:
$30^{\circ}$
25. 如图,在$△ABC$中,$∠A= 80^{\circ },∠B= 40^{\circ }$,点 M、N 分别是 AB、BC 上的动点,沿 MN 所在的直线折叠$∠B$,使点 B 的对应点$B'$落在线段 AC 上,若$∠NB'C$为直角三角形,求$∠MNB'$的度数.

答案:
$\because\angle A = 80^{\circ}$,$\angle B = 40^{\circ}$,$\therefore\angle C = 180^{\circ}-\angle A-\angle B = 180^{\circ}-80^{\circ}-40^{\circ}=60^{\circ}$,由折叠的性质可得:$\angle MB'N=\angle B = 40^{\circ}$,$\angle BNM=\angle B'NM=\frac{1}{2}\angle BNB'$,当$\angle CB'N = 90^{\circ}$时,$\angle B'NC = 180^{\circ}-\angle NB'C-\angle C = 180^{\circ}-90^{\circ}-60^{\circ}=30^{\circ}$,$\because\angle B'NC+\angle BNB' = 180^{\circ}$,$\therefore\angle BNB' = 180^{\circ}-\angle B'NC = 150^{\circ}$,$\therefore\angle MNB'=\frac{1}{2}\angle BNB' = 75^{\circ}$,当$\angle B'NC = 90^{\circ}$,如图所示,此时$B'$在$CA$的延长线上,不符合题意,综上所述,$\angle MNB'$的度数为:$75^{\circ}$.
$\because\angle A = 80^{\circ}$,$\angle B = 40^{\circ}$,$\therefore\angle C = 180^{\circ}-\angle A-\angle B = 180^{\circ}-80^{\circ}-40^{\circ}=60^{\circ}$,由折叠的性质可得:$\angle MB'N=\angle B = 40^{\circ}$,$\angle BNM=\angle B'NM=\frac{1}{2}\angle BNB'$,当$\angle CB'N = 90^{\circ}$时,$\angle B'NC = 180^{\circ}-\angle NB'C-\angle C = 180^{\circ}-90^{\circ}-60^{\circ}=30^{\circ}$,$\because\angle B'NC+\angle BNB' = 180^{\circ}$,$\therefore\angle BNB' = 180^{\circ}-\angle B'NC = 150^{\circ}$,$\therefore\angle MNB'=\frac{1}{2}\angle BNB' = 75^{\circ}$,当$\angle B'NC = 90^{\circ}$,如图所示,此时$B'$在$CA$的延长线上,不符合题意,综上所述,$\angle MNB'$的度数为:$75^{\circ}$.
查看更多完整答案,请扫码查看