2025年鹏教图书精彩假期暑假篇七年级


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年鹏教图书精彩假期暑假篇七年级 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年鹏教图书精彩假期暑假篇七年级》

7. 【问题背景】
在$△ABC$中,$AC= BC$,$∠C= 90^{\circ }$,点D为直线AC上一点,连接BD,在BD右侧作$BE⊥BD且BE= BD$,过点E作$EF⊥AB$交直线AB于点F,交直线BC于点H。
【初步探究】
(1)如图(a),当点D在线段AC上时,求证:$AB= EH$。
【推广探究】
(2)如图(b),当点D为CA延长线上一点时,其他条件不变,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请说明理由。
【拓展应用】
(3)若$AB= 8$,$BF= 3$,其他条件不变,直接写出EF的长。
(1)证明:如图1,
$\because AC = BC$,$∠C = 90^{\circ}$
$\therefore ∠A = ∠ABC = 45^{\circ}$
$\therefore ∠FBH = ∠ABC = 45^{\circ}$
$\because BE⊥BD$,$EF⊥AB$,
$\therefore ∠DBE = ∠BFE = ∠BFH = 90^{\circ}$
$\therefore ∠ABD = ∠E = 90^{\circ}-∠EBF$
$∠H = ∠FBH = 45^{\circ}$
$\therefore ∠A = ∠H$
在$\triangle ABD$和$\triangle HEB$中,$\because ∠ABD = ∠E$,$∠A = ∠H$,$BD = EB$,
$\therefore \triangle ABD\cong \triangle HEB(AAS)$
$\therefore AB = EH$
(2)解:成立
理由如下:如图2
$\because ∠DBE = ∠BFE = 90^{\circ}$,
$\therefore ∠ABD = ∠E = 90^{\circ}-∠EBF$
$\because ∠FHB = ∠ABC = ∠BAC = 45^{\circ}$,
$\therefore ∠BAD = ∠EHB = 180^{\circ}-45^{\circ}= 135^{\circ}$
在$\triangle ABD$和$\triangle HEB$中,$\because ∠ABD = ∠E$,$∠BAD = ∠EHB$,$BD = EB$,
$\therefore \triangle ABD\cong \triangle HEB(AAS)$
$\therefore AB = EH$
(3)
5或11
答案:
(1)证明:如图1,
$\because AC = BC$,$∠C = 90^{\circ}$
$\therefore ∠A = ∠ABC = 45^{\circ}$
图1
$\therefore ∠FBH = ∠ABC = 45^{\circ}$
$\because BE⊥BD$,$EF⊥AB$,
$\therefore ∠DBE = ∠BFE = ∠BFH = 90^{\circ}$
$\therefore ∠ABD = ∠E = 90^{\circ}-∠EBF$
$∠H = ∠FBH = 45^{\circ}$
$\therefore ∠A = ∠H$
在$\triangle ABD$和$\triangle HEB$中,$\because ∠ABD = ∠E$,$∠A = ∠H$,$BD = EB$,
$\therefore \triangle ABD\cong \triangle HEB(AAS)$
$\therefore AB = EH$
(2)解:成立
理由如下:如图2
$\because ∠DBE = ∠BFE = 90^{\circ}$,
图2
$\therefore ∠ABD = ∠E = 90^{\circ}-∠EBF$
$\because ∠FHB = ∠ABC = ∠BAC = 45^{\circ}$,
$\therefore ∠BAD = ∠EHB = 180^{\circ}-45^{\circ}= 135^{\circ}$
在$\triangle ABD$和$\triangle HEB$中,$\because ∠ABD = ∠E$,$∠BAD = ∠EHB$,$BD = EB$,
$\therefore \triangle ABD\cong \triangle HEB(AAS)$
$\therefore AB = EH$
(3)5或11

查看更多完整答案,请扫码查看

关闭