20. (本小题满6分)
利用因式分解进行简便计算:
(1)$58^{2} - 42^{2}$.
(2)$99^{2} + 2 × 99 + 1$.
利用因式分解进行简便计算:
(1)$58^{2} - 42^{2}$.
(2)$99^{2} + 2 × 99 + 1$.
答案:
(1) $58^{2} - 42^{2}$
$=(58 + 42)(58 - 42)$
$=100×16$
$=1600$
(2) $99^{2} + 2×99 + 1$
$=(99 + 1)^{2}$
$=100^{2}$
$=10000$
(1) $58^{2} - 42^{2}$
$=(58 + 42)(58 - 42)$
$=100×16$
$=1600$
(2) $99^{2} + 2×99 + 1$
$=(99 + 1)^{2}$
$=100^{2}$
$=10000$
21. (本小题满分6分)
分解因式:
(1)$m^{4} - 1$.
(2)$(x + 1)(x + 2) + \frac{1}{4}$.
分解因式:
(1)$m^{4} - 1$.
(2)$(x + 1)(x + 2) + \frac{1}{4}$.
答案:
(1)
$\begin{aligned}m^{4} - 1\\=(m^{2})^{2}-1^{2}\\=(m^{2}+1)(m^{2}-1)\\=(m^{2}+1)(m + 1)(m - 1)\end{aligned}$
(2)
$\begin{aligned}&(x + 1)(x + 2)+\frac{1}{4}\\=&x^{2}+3x + 2+\frac{1}{4}\\=&x^{2}+3x+\frac{9}{4}\\=&x^{2}+2×\frac{3}{2}x+(\frac{3}{2})^{2}\\=&(x+\frac{3}{2})^{2}\end{aligned}$
(1)
$\begin{aligned}m^{4} - 1\\=(m^{2})^{2}-1^{2}\\=(m^{2}+1)(m^{2}-1)\\=(m^{2}+1)(m + 1)(m - 1)\end{aligned}$
(2)
$\begin{aligned}&(x + 1)(x + 2)+\frac{1}{4}\\=&x^{2}+3x + 2+\frac{1}{4}\\=&x^{2}+3x+\frac{9}{4}\\=&x^{2}+2×\frac{3}{2}x+(\frac{3}{2})^{2}\\=&(x+\frac{3}{2})^{2}\end{aligned}$
查看更多完整答案,请扫码查看