2025年云南省标准教辅优佳学案配套测试卷八年级数学上册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年云南省标准教辅优佳学案配套测试卷八年级数学上册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年云南省标准教辅优佳学案配套测试卷八年级数学上册人教版》

26. (本小题满分10分)
先阅读下面的内容,再解答问题.
例题:若$m^2 + 2mn + 2n^2 - 6n + 9 = 0$,求$m$和$n$的值.
解:$\because m^2 + 2mn + 2n^2 - 6n + 9 = 0$,
$\therefore (m^2 + 2mn + n^2) + (n^2 - 6n + 9) = 0$.
$\therefore (m + n)^2 + (n - 3)^2 = 0$.
$\therefore m + n = 0$,$n - 3 = 0$.
解得$m = -3$,$n = 3$.
问题:
(1)若$x^2 + 2y^2 - 2xy + 6y + 9 = 0$,求$x^y$的值.
(2)已知$\triangle ABC$的三边长$a$,$b$,$c$都是正整数,且满足$a^2 + b^2 - 6a - 4b + 13 + |3 - c| = 0$,那么$\triangle ABC$是什么形状的三角形?
(1)
$\because x^2 + 2y^2 - 2xy + 6y + 9 = 0$,
$\therefore (x^2 - 2xy + y^2) + (y^2 + 6y + 9) = 0$,
$\therefore (x - y)^2 + (y + 3)^2 = 0$,
$\because (x - y)^2 \geq 0$,$(y + 3)^2 \geq 0$,
$\therefore x - y = 0$,$y + 3 = 0$,
解得$y = -3$,$x = y = -3$,
$\therefore x^y = (-3)^{-3} = -\dfrac{1}{27}$。
(2)
$\because a^2 + b^2 - 6a - 4b + 13 + |3 - c| = 0$,
$\therefore (a^2 - 6a + 9) + (b^2 - 4b + 4) + |3 - c| = 0$,
$\therefore (a - 3)^2 + (b - 2)^2 + |3 - c| = 0$,
$\because (a - 3)^2 \geq 0$,$(b - 2)^2 \geq 0$,$|3 - c| \geq 0$,
$\therefore a - 3 = 0$,$b - 2 = 0$,$3 - c = 0$,
解得$a = 3$,$b = 2$,$c = 3$,
$\because a = c = 3$,
$\therefore \triangle ABC$是等腰三角形。
答案:
(1)
$\because x^2 + 2y^2 - 2xy + 6y + 9 = 0$,
$\therefore (x^2 - 2xy + y^2) + (y^2 + 6y + 9) = 0$,
$\therefore (x - y)^2 + (y + 3)^2 = 0$,
$\because (x - y)^2 \geq 0$,$(y + 3)^2 \geq 0$,
$\therefore x - y = 0$,$y + 3 = 0$,
解得$y = -3$,$x = y = -3$,
$\therefore x^y = (-3)^{-3} = -\dfrac{1}{27}$。
(2)
$\because a^2 + b^2 - 6a - 4b + 13 + |3 - c| = 0$,
$\therefore (a^2 - 6a + 9) + (b^2 - 4b + 4) + |3 - c| = 0$,
$\therefore (a - 3)^2 + (b - 2)^2 + |3 - c| = 0$,
$\because (a - 3)^2 \geq 0$,$(b - 2)^2 \geq 0$,$|3 - c| \geq 0$,
$\therefore a - 3 = 0$,$b - 2 = 0$,$3 - c = 0$,
解得$a = 3$,$b = 2$,$c = 3$,
$\because a = c = 3$,
$\therefore \triangle ABC$是等腰三角形。

查看更多完整答案,请扫码查看

关闭