2025年把关题高中数学选择性必修第二册人教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年把关题高中数学选择性必修第二册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
1. [2024 江苏 盐城中学高二检测]在数列$\{ a_{n}\}$中,若对任意的$n$均有$a_{n}+a_{n + 1}+a_{n + 2}$为定值$(n \in \mathbf{N}^{*})$,且$a_{2} = 4$,$a_{3} = 3$,$a_{7} = 2$,则此数列$\{ a_{n}\}$的前 100 项和$S_{100} = ($ )
A.296
B.297
C.298
D.299
A.296
B.297
C.298
D.299
答案:
1.D 解析:在数列$\{ a_{n}\}$中,若对任意的$n$均有$a_{n}+a_{n + 1} +$ $a_{n + 2}$为定值$(n \in \mathbf{N}^{*})$,且$a_{2} = 4$,$a_{3} = 3$,$a_{7} = 2$,
$\therefore a_{1} + a_{2} + a_{3} = a_{2} + a_{3} + a_{4}$,$\therefore a_{1} = a_{4}$.同理可得$a_{1} = a_{4} =$ $a_{7} = 2$,$a_{n + 3} = a_{n}$,则此数列$\{ a_{n}\}$的前100项和$S_{100} =$ $a_{1} + 33(a_{2} + a_{3} + a_{4}) = 2 + 33 × 9 = 299$.
本题实为周期数列,由$a_{n + 1} + a_{n + 1} + a_{n + 2}$为定值得到周期性是解题关键;另外,由周期性求得$a_{1} = a_{4} = a_{7} = 2$,是另一个解题关键.
$\therefore a_{1} + a_{2} + a_{3} = a_{2} + a_{3} + a_{4}$,$\therefore a_{1} = a_{4}$.同理可得$a_{1} = a_{4} =$ $a_{7} = 2$,$a_{n + 3} = a_{n}$,则此数列$\{ a_{n}\}$的前100项和$S_{100} =$ $a_{1} + 33(a_{2} + a_{3} + a_{4}) = 2 + 33 × 9 = 299$.
本题实为周期数列,由$a_{n + 1} + a_{n + 1} + a_{n + 2}$为定值得到周期性是解题关键;另外,由周期性求得$a_{1} = a_{4} = a_{7} = 2$,是另一个解题关键.
2. [2024 杭州 第四中学高二检测]数列$\{ a_{n}\}$满足$a_{n + 1} = \begin{cases} 2a_{n},0 \leqslant a_{n} < \frac{1}{2}, \\2a_{n} - 1,\frac{1}{2} \leqslant a_{n} < 1, \end{cases}$若$a_{1} = \frac{3}{5}$,则$a_{2023} = ($ )
A.$\frac{1}{5}$
B.$\frac{2}{5}$
C.$\frac{3}{5}$
D.$\frac{4}{5}$
A.$\frac{1}{5}$
B.$\frac{2}{5}$
C.$\frac{3}{5}$
D.$\frac{4}{5}$
答案:
2.B 解析:$\because a_{n + 1} = \begin{cases} 2a_{n},0 \leq a_{n} < \frac{1}{2}, \\2a_{n} - 1,\frac{1}{2} \leq a_{n} < 1, \end{cases}$
$a_{1} = \frac{3}{5} \in [\frac{1}{2},1)$,$\therefore a_{2} = 2a_{1} - 1 = \frac{1}{5} \in [0,\frac{1}{2})$,
$\therefore a_{3} = 2a_{2} = 2 × \frac{1}{5} = \frac{2}{5} \in [0,\frac{1}{2})$,
$\therefore a_{4} = 2a_{3} = \frac{4}{5} \in [\frac{1}{2},1)$,由递推公式写出数列的前几项,得到周期性.
$\therefore a_{5} = 2a_{4} - 1 = \frac{3}{5} = a_{1}$,
$\therefore$数列$\{ a_{n}\}$是以4为周期的数列.
又2023 = 505×4+3,$\therefore a_{2023} = a_{3} = \frac{2}{5}$.
$a_{1} = \frac{3}{5} \in [\frac{1}{2},1)$,$\therefore a_{2} = 2a_{1} - 1 = \frac{1}{5} \in [0,\frac{1}{2})$,
$\therefore a_{3} = 2a_{2} = 2 × \frac{1}{5} = \frac{2}{5} \in [0,\frac{1}{2})$,
$\therefore a_{4} = 2a_{3} = \frac{4}{5} \in [\frac{1}{2},1)$,由递推公式写出数列的前几项,得到周期性.
$\therefore a_{5} = 2a_{4} - 1 = \frac{3}{5} = a_{1}$,
$\therefore$数列$\{ a_{n}\}$是以4为周期的数列.
又2023 = 505×4+3,$\therefore a_{2023} = a_{3} = \frac{2}{5}$.
3. 已知数列$\{ a_{n}\}$的通项公式为$a_{n} = (\frac{4}{9})^{n - 1} - (\frac{2}{3})^{n - 1}(n \in \mathbf{N}^{*})$,则数列$\{ a_{n}\} ($ )
A.有最大项,没有最小项
B.有最小项,没有最大项
C.既有最大项又有最小项
D.既没有最大项也没有最小项
A.有最大项,没有最小项
B.有最小项,没有最大项
C.既有最大项又有最小项
D.既没有最大项也没有最小项
答案:
3.C 解析:$a_{n} = (\frac{4}{9})^{n - 1} - (\frac{2}{3})^{n - 1} = [(\frac{2}{3})^{n - 1}]^{2} - (\frac{2}{3})^{n - 1}$,
令$(\frac{2}{3})^{n - 1} = t$,则$t$是区间$(0,1]$上的值.令$y = t^{2} - t =$ $(t - \frac{1}{2})^{2} - \frac{1}{4}$,可知当$t = 1$,即$n = 1$时,$a_{n}$取得最大值;
使$(\frac{2}{3})^{n - 1}$最接近$\frac{1}{2}$的$n$的值为数列$\{ a_{n}\}$中最小项的序数.所以该数列既有最大项又有最小项.
令$(\frac{2}{3})^{n - 1} = t$,则$t$是区间$(0,1]$上的值.令$y = t^{2} - t =$ $(t - \frac{1}{2})^{2} - \frac{1}{4}$,可知当$t = 1$,即$n = 1$时,$a_{n}$取得最大值;
使$(\frac{2}{3})^{n - 1}$最接近$\frac{1}{2}$的$n$的值为数列$\{ a_{n}\}$中最小项的序数.所以该数列既有最大项又有最小项.
4. [2024 广东 汕头高二期末]在数列$\{ a_{n}\}$中,$a_{1} = 1$,$a_{2} = 2$,$a_{3} = \frac{1}{2}$,$a_{n}a_{n + 3} = 2$,则$\log_{2}a_{1} + \log_{2}a_{2} + ·s + \log_{2}a_{2022} = ($ )
A.260
B.860
C.1011
D.2022
A.260
B.860
C.1011
D.2022
答案:
4.C 解析:由$a_{n}a_{n + 3} = 2$得$a_{n + 3}a_{n + 6} = 2$,两式相除可得$a_{n} = a_{n + 6}$,所以数列$\{ a_{n}\}$是以6为周期的周期数列.又$a_{1}a_{2}a_{3}a_{4}a_{5}a_{6} = a_{4} · a_{a} · a_{a} · a_{a} = 8$,所以$log_{2}a_{1} + log_{2}a_{2} + ·s$ $+ log_{2}a_{2022} = log_{2}(a_{1}a_{2}·s a_{2022}) = log_{2}(a_{1}a_{2}·s a_{6})^{337} =$ $log_{2}8^{337} = log_{2}2^{1011} = 1011$.
5. [多选题]若数列$\{ a_{n}\}$满足$a_{1} = 1$,$a_{2} = 1$,$a_{n} = a_{n - 1} + a_{n - 2}(n \geqslant 3,n \in \mathbf{N}^{*})$,则称数列$\{ a_{n}\}$为斐波那契数列,又称黄金分割数列,则下列结论成立的有(
A.$a_{7} = 13$
B.$a_{1} + a_{3} + a_{5} + ·s a_{2021} = a_{2022}$
C.$3a_{n} = a_{n - 2} + a_{n + 2}(n \geqslant 3,n \in \mathbf{N}^{*})$
D.$a_{2} + a_{4} + a_{6} + ·s + a_{2022} = a_{2023}$
ABC
)A.$a_{7} = 13$
B.$a_{1} + a_{3} + a_{5} + ·s a_{2021} = a_{2022}$
C.$3a_{n} = a_{n - 2} + a_{n + 2}(n \geqslant 3,n \in \mathbf{N}^{*})$
D.$a_{2} + a_{4} + a_{6} + ·s + a_{2022} = a_{2023}$
答案:
5.ABC 解析:由题意得$a_{3} = 2$,$a_{4} = 3$,$a_{5} = 5$,$a_{6} = 8$,$a_{7} = 13$,故A正确;
$a_{2022} = a_{2021} + a_{2020} = a_{2021} + a_{2019} + a_{2018} = ·s = a_{2021} + a_{2019} + ·s +$ $a_{3} + a_{2} = a_{2021} + a_{2019} + ·s + a_{3} + a_{1}$,故B正确;
$a_{n + 2} = a_{n} + a_{n + 1} = a_{n} + a_{n - 1} + a_{n} = 2a_{n} + a_{n - 1}$①,$a_{n + 1} + a_{n - 2} = a_{a}$②,
①+②得$a_{n + 2} + a_{n - 2} = 2a_{n} + a_{n + 1} + a_{n} - a_{n - 1} = 3a_{n}(n \geq 3,n \in$ $\mathbf{N}^{*})$,故C正确;
$a_{2023} = a_{2022} + a_{2021} = a_{2022} + a_{2020} + a_{2019} = ·s = a_{2022} + a_{2020} + ·s +$ $a_{4} + a_{3} = a_{2022} + a_{2020} + ·s + a_{4} + a_{1} + a_{2}$,故D错误.
$a_{2022} = a_{2021} + a_{2020} = a_{2021} + a_{2019} + a_{2018} = ·s = a_{2021} + a_{2019} + ·s +$ $a_{3} + a_{2} = a_{2021} + a_{2019} + ·s + a_{3} + a_{1}$,故B正确;
$a_{n + 2} = a_{n} + a_{n + 1} = a_{n} + a_{n - 1} + a_{n} = 2a_{n} + a_{n - 1}$①,$a_{n + 1} + a_{n - 2} = a_{a}$②,
①+②得$a_{n + 2} + a_{n - 2} = 2a_{n} + a_{n + 1} + a_{n} - a_{n - 1} = 3a_{n}(n \geq 3,n \in$ $\mathbf{N}^{*})$,故C正确;
$a_{2023} = a_{2022} + a_{2021} = a_{2022} + a_{2020} + a_{2019} = ·s = a_{2022} + a_{2020} + ·s +$ $a_{4} + a_{3} = a_{2022} + a_{2020} + ·s + a_{4} + a_{1} + a_{2}$,故D错误.
6. [多选题] [新定义]若数列$\{ a_{n}\}$满足:对任意正整数$n$,$\{ a_{n + 1} - a_{n}\}$为递减数列,则称数列$\{ a_{n}\}$为“差递减数列”. 给出下列数列$\{ a_{n}\}(n \in \mathbf{N}^{*})$,
其中是“差递减数列”的有(
A.$a_{n} = 3n$
B.$a_{n} = n^{2} + 1$
C.$a_{n} = \sqrt{n}$
D.$a_{n} = \ln\frac{n}{n + 1}$
其中是“差递减数列”的有(
CD
)A.$a_{n} = 3n$
B.$a_{n} = n^{2} + 1$
C.$a_{n} = \sqrt{n}$
D.$a_{n} = \ln\frac{n}{n + 1}$
答案:
6.CD 解析:选项A,由$a_{n} = 3n$,得$a_{n + 1} - a_{n} = 3$,则$\{ a_{n + 1} - a_{n}\}$为常数列,不满足“差递减数列”的定义;
选项B,由$a_{n} = n^{2} + 1$,得$a_{n + 1} - a_{n} = (n + 1)^{2} + 1 - n^{2} - 1 = 2n + 1$,则$\{ a_{n + 1} - a_{n}\}$为递增数列,不满足“差递减数列”的定义;
选项C,由$a_{n} = \sqrt{n}$,得$a_{n + 1} - a_{n} = \sqrt{n + 1} - \sqrt{n} =$ $\frac{1}{\sqrt{n + 1} + \sqrt{n}}$,显然$\{ a_{n + 1} - a_{n}\}$为递减数列,满足“差递减数列”的定义;
选项D,由$a_{n} = \ln \frac{n}{n + 1}$,得$a_{n + 1} - a_{n} = \ln \frac{n + 1}{n + 2} - \ln \frac{n}{n + 1} =$ $\ln \frac{(n + 1)^{2}}{n(n + 2)} = \ln [1 + \frac{1}{n(n + 2)}]$,随着$n$的增大,此值变小,所以$\{ a_{n + 1} - a_{n}\}$为递减数列,满足“差递减数列”的定义.
选项B,由$a_{n} = n^{2} + 1$,得$a_{n + 1} - a_{n} = (n + 1)^{2} + 1 - n^{2} - 1 = 2n + 1$,则$\{ a_{n + 1} - a_{n}\}$为递增数列,不满足“差递减数列”的定义;
选项C,由$a_{n} = \sqrt{n}$,得$a_{n + 1} - a_{n} = \sqrt{n + 1} - \sqrt{n} =$ $\frac{1}{\sqrt{n + 1} + \sqrt{n}}$,显然$\{ a_{n + 1} - a_{n}\}$为递减数列,满足“差递减数列”的定义;
选项D,由$a_{n} = \ln \frac{n}{n + 1}$,得$a_{n + 1} - a_{n} = \ln \frac{n + 1}{n + 2} - \ln \frac{n}{n + 1} =$ $\ln \frac{(n + 1)^{2}}{n(n + 2)} = \ln [1 + \frac{1}{n(n + 2)}]$,随着$n$的增大,此值变小,所以$\{ a_{n + 1} - a_{n}\}$为递减数列,满足“差递减数列”的定义.
7. [数学文化] [2024 四川 南充高二期末]谈祥柏先生是我国著名的数学科普作家,在他的《好玩的数学》一书中,有一篇文章《五分钟挑出埃及分数》,文章告诉我们,古埃及人喜欢使用分子为 1 的分数(称为埃及分数),则下列埃及分数$\frac{1}{1 × 3},\frac{1}{3 × 5},\frac{1}{5 × 7}$,$·s$,$\frac{1}{2021 × 2023}$的和是(
A.$\frac{2022}{2023}$
B.$\frac{2023}{2022}$
C.$\frac{1011}{2023}$
D.$\frac{2023}{1011}$
C
)A.$\frac{2022}{2023}$
B.$\frac{2023}{2022}$
C.$\frac{1011}{2023}$
D.$\frac{2023}{1011}$
答案:
7.C 解析:因为$\frac{1}{(2n - 1)(2n + 1)} = \frac{1}{2}(\frac{1}{2n - 1} - \frac{1}{2n + 1})$
所以$\frac{1}{1 × 3} + \frac{1}{3 × 5} + \frac{1}{5 × 7} + ·s + \frac{1}{2021 × 2023} =$
$=\frac{1}{2} × (1 - \frac{1}{3} + \frac{1}{3} - \frac{1}{5} + ·s + \frac{1}{2021} - \frac{1}{2023}) =$
$=\frac{1}{2} × (1 - \frac{1}{2023}) = \frac{1011}{2023}$.
所以$\frac{1}{1 × 3} + \frac{1}{3 × 5} + \frac{1}{5 × 7} + ·s + \frac{1}{2021 × 2023} =$
$=\frac{1}{2} × (1 - \frac{1}{3} + \frac{1}{3} - \frac{1}{5} + ·s + \frac{1}{2021} - \frac{1}{2023}) =$
$=\frac{1}{2} × (1 - \frac{1}{2023}) = \frac{1011}{2023}$.
8. [2024 河南 洛阳高二检测]已知数列$\{ a_{n}\}$的通项公式为$a_{n} = \frac{6n - 31}{3n - 17}$. 若$a_{i},a_{j}$分别是该数列的最大项和最小项,则$i + j =$
11
.
答案:
8.11 解析:由$a_{n} = \frac{6n - 31}{3n - 17} = \frac{2(3n - 17) + 3}{3n - 17} = 2 + \frac{3}{3n - 17}$,可得数列$\{ a_{n}\}$当$1 \leq n \leq 5$时单调递减,且$a_{n} < 2$;当$n \geq 6$时单调递减,且$a_{n} > 2$,$\therefore a_{i} = a_{j},a_{i} = a_{k}$,则$i + j = 11$.
9. 在数列$\{ a_{n}\}$中,$a_{n} = (n + 1)(\frac{10}{11})^{n}(n \in \mathbf{N}^{*})$.
(1) 求证:数列$\{ a_{n}\}$先递增后递减;
(2) 求数列$\{ a_{n}\}$的最大项.
(1) 求证:数列$\{ a_{n}\}$先递增后递减;
(2) 求数列$\{ a_{n}\}$的最大项.
答案:
9.
(1)证明:由$a_{n} > 0$,令$\frac{a_{n + 1}}{a_{n}} > 1$,即$\frac{(n + 2)(\frac{10}{11})^{n + 1}}{(n + 1)(\frac{10}{11})^{n}} > 1$,
整理得$\frac{n + 2}{n + 1} > \frac{11}{10}$,解得$n < 9$,即当$n < 9$时,$\frac{a_{n + 1}}{a_{n}} > 1$.
同理,令$\frac{a_{n + 1}}{a_{n}} = 1$,即当$n = 9$时,$a_{9} = a_{10} = \frac{10^{10}}{11^{9}}$.
令$\frac{a_{n + 1}}{a_{n}} < 1$,得$n > 9$,即当$n > 9$时,$\frac{a_{n + 1}}{a_{n}} < 1$.
综上,数列$\{ a_{n}\}$从第1项到第9项递增,从第10项起递减,即数列$\{ a_{n}\}$先递增后递减.
(2)解:由
(1)知$a_{1} < a_{2} < a_{3} < ·s < a_{9} = a_{10} > a_{11} > a_{12} > ·s$,
所以数列中有最大项,最大项为第9,10项,
即$a_{9} = a_{10} = \frac{10^{10}}{11^{9}}$.
方法总结
求数列中最大项和最小项的两种方法
1.解不等式组
(1)若求最大项:设$a_{n}$为最大项,则有$\begin{cases} a_{n} \geq a_{n - 1}(n \geq 2), \\a_{n} \geq a_{n + 1}; \end{cases}$
若$\{ a_{n}\}$中各项均为正数,则也可等价于$\begin{cases} \frac{a_{n}}{a_{n - 1}} \geq 1(n \geq 2), \\a_{n + 1} \leq 1. \end{cases}$
(2)若求最小项:设$a_{n}$为最小项,则有$\begin{cases} a_{n} \leq a_{n - 1}(n \geq 2), \\a_{n} \leq a_{n + 1}. \end{cases}$
若$\{ a_{n}\}$中各项均为正数,则也可等价于$\begin{cases} \frac{a_{n}}{a_{n - 1}} \leq 1(n \geq 2), \\a_{n + 1} \geq 1. \end{cases}$
2.利用函数的单调性
因为数列是一种特殊的函数,所以可以利用函数的单调性求最值,但要特别注意数列中的$n$为正整数.
(1)证明:由$a_{n} > 0$,令$\frac{a_{n + 1}}{a_{n}} > 1$,即$\frac{(n + 2)(\frac{10}{11})^{n + 1}}{(n + 1)(\frac{10}{11})^{n}} > 1$,
整理得$\frac{n + 2}{n + 1} > \frac{11}{10}$,解得$n < 9$,即当$n < 9$时,$\frac{a_{n + 1}}{a_{n}} > 1$.
同理,令$\frac{a_{n + 1}}{a_{n}} = 1$,即当$n = 9$时,$a_{9} = a_{10} = \frac{10^{10}}{11^{9}}$.
令$\frac{a_{n + 1}}{a_{n}} < 1$,得$n > 9$,即当$n > 9$时,$\frac{a_{n + 1}}{a_{n}} < 1$.
综上,数列$\{ a_{n}\}$从第1项到第9项递增,从第10项起递减,即数列$\{ a_{n}\}$先递增后递减.
(2)解:由
(1)知$a_{1} < a_{2} < a_{3} < ·s < a_{9} = a_{10} > a_{11} > a_{12} > ·s$,
所以数列中有最大项,最大项为第9,10项,
即$a_{9} = a_{10} = \frac{10^{10}}{11^{9}}$.
方法总结
求数列中最大项和最小项的两种方法
1.解不等式组
(1)若求最大项:设$a_{n}$为最大项,则有$\begin{cases} a_{n} \geq a_{n - 1}(n \geq 2), \\a_{n} \geq a_{n + 1}; \end{cases}$
若$\{ a_{n}\}$中各项均为正数,则也可等价于$\begin{cases} \frac{a_{n}}{a_{n - 1}} \geq 1(n \geq 2), \\a_{n + 1} \leq 1. \end{cases}$
(2)若求最小项:设$a_{n}$为最小项,则有$\begin{cases} a_{n} \leq a_{n - 1}(n \geq 2), \\a_{n} \leq a_{n + 1}. \end{cases}$
若$\{ a_{n}\}$中各项均为正数,则也可等价于$\begin{cases} \frac{a_{n}}{a_{n - 1}} \leq 1(n \geq 2), \\a_{n + 1} \geq 1. \end{cases}$
2.利用函数的单调性
因为数列是一种特殊的函数,所以可以利用函数的单调性求最值,但要特别注意数列中的$n$为正整数.
查看更多完整答案,请扫码查看