2025年把关题高中数学选择性必修第二册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年把关题高中数学选择性必修第二册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年把关题高中数学选择性必修第二册人教版》

1. 数列$2, \frac{4}{3}, \frac{8}{5}, \frac{16}{7}, \frac{32}{9}, ·s$的一个通项公式为$a_{n}=($ $)$

A.$\frac{2n}{2n-1}$
B.$\frac{2^{n}}{n}$
C.$\frac{2^{n}}{2n-1}$
D.$\frac{2^{n}}{2n+1}$
答案: 1.C 解析:分别判断出由分子和分母构成的数列的特征,再求出此数列的通项公式.因为2,4,8,16,32,···是以2为首项和公比的等比数列,且1,3,5,7,9,···是以1为首项,2为公差的等差数列,所以此数列的一个通项公式是$a_{n} = \frac{2^{n}}{2n - 1}$.
2.$[$武汉高二期末$]$根据数列$\{ a_{n}\}$的前$4$项$-1,3,-6,10$,写出数列的一个通项公式:
$a_{n} = (-1)^{n} · \frac{n(n + 1)}{2}$(答案不唯一)
答案: 2.$a_{n} = (-1)^{n} · \frac{n(n + 1)}{2}$(答案不唯一) 解析:因为$a_{1} = (-1)^{1} × \frac{1 × 2}{2} = -1$,$a_{2} = (-1)^{2} × \frac{2 × 3}{2} = 3$,$a_{3} = (-1)^{3} × \frac{3 × 4}{2} = -6$,$a_{4} = (-1)^{4} × \frac{4 × 5}{2} = 10$,所以$a_{n} = (-1)^{n} · \frac{n(n + 1)}{2}$
方法总结
根据数列的前几项写出某一个通项公式的方法
首先,从下面4个角度观察数列的前几项:
(1)各项的符号特征;
(2)各项能否拆分;
(3)分式的分子、分母的特征;
(4)相邻项的变化规律.
其次,寻找各项与对应的项的序号之间的规律,一般方法为
(1)熟记一些特殊数列的通项公式,如$a_{n} = \frac{10^{n} - 1}{9}$,$a_{n}=n$,$a_{n} = 2n - 1$,$a_{n} = 2^{n}$,$a_{n} = n^{2}$等,熟悉它们的变化规律,并灵活运用;
(2)将数列的各项拆分成若干个常见数列的“和”“差”“积”“商”,如分式形式的数列,可将分子、分母分别求通项;
(3)当一个数列各项的符号出现“+”“-”相间时,应把符号分离出来,可用$(-1)^{n}$或$(-1)^{n + 1}$来实现.
3. 已知数列$\{ a_{n}\}$满足$a_{n}-a_{n-1}=2(n\geqslant 2,n\in \mathbf{N}^{*})$,且$a_{1},a_{3},a_{4}$成等比数列,则数列$\{ a_{n}\}$的通项公式为$($ $)$

A.$a_{n}=2n$
B.$a_{n}=2n+10$
C.$a_{n}=2n-10$
D.$a_{n}=2n+4$
答案: 3.C 解析:因为数列$\{ a_{n}\}$满足$a_{n} - a_{n - 1} = 2(n \geq 2$,$n \in N^{*})$,所以数列$\{ a_{n}\}$是公差为2的等差数列.
又$a_{1}$,$a_{3}$,$a_{6}$成等比数列,所以$a_{3}^{2} = a_{1} · a_{6}$,即$(a_{1} + 4)^{2} = a_{1}(a_{1} + 6 × 2 - 10)$(此处原书排版可能有误,按等差数列$a_{6}=a_{1}+5×2=a_{1}+10$),解得$a_{1} = - 8$.
所以$a_{n} = - 8 + 2(n - 1) = 2n - 10$. 等比中项法.
4. 在数列$\{ a_{n}\}$中,$a_{1}=1,a_{2}=2$,且$a_{n+1}a_{n-1}=a_{n}^{2}(n\geqslant 2)$,则数列$\{ a_{n}\}$的通项公式是
$a_{n} = 2^{n - 1}$
.
答案: 4.$a_{n} = 2^{n - 1}$ 解析:由$a_{n + 1}a_{n - 1} = a_{n}^{2}(n \geq 2)$知,$\{ a_{n}\}$是等比数列,公比$q = \frac{a_{2}}{a_{1}} = 2$,故$a_{n} = 1 × 2^{n - 1} = 2^{n - 1}$.
5. 已知各项都为正数的数列$\{ a_{n}\}$满足$a_{1}=1,a_{n}^{2}-(2a_{n+1}-1)a_{n}-2a_{n+1}=0$,则$a_{3}=$ ;数列$\{$
$a_{n}\}$的通项公式为
$a_{n} = \frac{1}{2^{n - 1}}$
.
答案: 5.$\frac{1}{4}$ $a_{n} = \frac{1}{2^{n - 1}}$ 解析:由题意可得$a_{2} = \frac{1}{2}$,$a_{3} = \frac{1}{4}$
由$a_{n}^{2} - (2a_{n + 1} - 1)a_{n} - 2a_{n + 1} = 0$,得$2a_{n + 1}(a_{n} + 1) = a_{n}(a_{n} + 1)$. 分组分解.
因为$\{ a_{n}\}$的各项都为正数,所以$\frac{a_{n + 1}}{a_{n}} = \frac{1}{2}$.故$\{ a_{n}\}$是首项为1,公比为$\frac{1}{2}$的等比数列,因此$a_{n} = \frac{1}{2^{n - 1}}$
6.$[$武汉高二期末$]$已知数列$\{ a_{n}\}$满足$a_{1}+a_{2}+·s+a_{n}=n(n+3),n\in \mathbf{N}^{*}$,则$a_{n}=($ $)$

A.$2n$
B.$2n+2$
C.$n+3$
D.$3n+1$
答案: 6.B 解析:因为$a_{1} + a_{2} + ·s + a_{n} = n(n + 3)$,当$n = 1$时,$a_{1} = 4$,当$n \geq 2$时,$a_{n} = (a_{1} + a_{2} + ·s + a_{n}) - (a_{1} + a_{2} + ·s + a_{n - 1}) = n(n + 3) - (n - 1)(n + 2) = 2n + 2$
当$n = 1$时,$a_{1} = 4$也满足上式,所以$a_{n} = 2n + 2$
验证首项$a_{1}$是否符合$a_{n}(n \geq 2)$.
7. 已知数列$\{ a_{n}\}$的前$n$项和为$S_{n}$,若$S_{n}=2a_{n}-2(n\in \mathbf{N}^{*})$,则数列$\{ a_{n}\}$的通项公式为$a_{n}=$
$2^{n}$
.
答案: 7.$2^{n}$ 解析:当$n = 1$时,$a_{1} = S_{1} = 2a_{1} - 2$,可得$a_{1} = 2$;
当$n \geq 2$时,$S_{n - 1} = 2a_{n - 1} - 2$,所以$a_{n} = S_{n} - S_{n - 1} = 2a_{n} - 2a_{n - 1}$,所以$a_{n} = 2a_{n - 1}$,即$\frac{a_{n}}{a_{n - 1}} = 2(n \geq 2)$.
因为$a_{1} = 2 \neq 0$,所以数列$\{ a_{n}\}$是以2为首项,2为公比的等比数列,所以$a_{n} = 2 × 2^{n - 1} = 2^{n}$.
8. 已知$S_{n}$是数列$\{ a_{n}\}$的前$n$项和,若$a_{1}+2a_{2}+2^{2}a_{3}+·s+2^{n-1}a_{n}=n^{2}+2n$,则数列$\{ a_{n}\}$的通项公式为$a_{n}=$
$\frac{2n + 1}{2^{n - 1}}$
.
答案: 8.$\frac{2n + 1}{2^{n - 1}}$ 解析:因为$a_{1} + 2a_{2} + 2^{2}a_{3} + ·s + 2^{n - 1}a_{n} = n^{2} + 2n$,①
则当$n = 1$时,$a_{1} = 3$;
当$n \geq 2$时,$a_{1} + 2a_{2} + 2^{2}a_{3} + ·s + 2^{n - 2}a_{n - 1} = (n - 1)^{2} + 2(n - 1)$.②
① - ②,得$2^{n - 1}a_{n} = 2n + 1$,即$a_{n} = \frac{2n + 1}{2^{n - 1}}$,满足$a_{1} = 3$,所以$a_{n} = \frac{2n + 1}{2^{n - 1}}$.
方法总结
对于由$S_{n}$与$a_{n}$构成的递推关系式,通常是通过$a_{n} = S_{n} - S_{n - 1}(n \geq 2)$消去$S_{n}$或$S_{n - 1}$两种途径解决问题.对于由$S_{n}$与$S_{n - 1}$构成的递推关系式,通常通过$a_{n} = S_{n} - S_{n - 1}(n \geq 2)$构建$a_{n}$求解.注意表达式$a_{n} = \begin{cases} S_{1}, n = 1, \\ S_{n} - S_{n - 1}, n \geq 2. \end{cases}$若$n = 1$时,$a_{n}(n \geq 2)$表达式的值不等于$a_{1}$,则数列的通项公式要分段表示.
9.$[$2024湖北咸宁高二检测$]$已知数列$\{ a_{n}\}$的首项为$2$,且$a_{n+1}-a_{n}=2^{n+1}$,则$a_{n}=($ $)$

A.$2^{n}$
B.$2^{n-1}+1$
C.$2^{n+1}-2$
D.$2^{n+1}-2+2$(此处原图有遮挡)
答案: 9.D 解析:由已知得$a_{n + 1} - a_{n} = 2^{n + 1}$,$a_{1} = 2$,则当$n \geq 2$时,有$a_{n} - a_{1} = (a_{n} - a_{n - 1}) + (a_{n - 1} - a_{n - 2}) + ·s + (a_{2} - a_{1}) = 2^{n} + 2^{n - 1} + ·s + 2^{2}$,$a_{n} = 2^{n} + 2^{n - 1} + ·s + 2^{2} + a_{1} = \frac{2(1 - 2^{n})}{1 - 2} = 2^{n + 1} - 2$.
经检验,当$n = 1$时也符合该式,所以$a_{n} = 2^{n + 1} - 2$.
验证$a_{1}$是否符合$a_{n}(n \geq 2)$.
10. 在数列$\{ a_{n}\}$中,$a_{1}=2$,$a_{n+1}=a_{n}+\lg\left(1+\frac{1}{n}\right)$,则$a_{n}=$( $)$

A.$2+\lg n$
B.$2+(n-1)\lg n$
C.$2+n\lg n$
D.$1+n\lg n$
答案: 10.A 解析:(方法1)因为$a_{n + 1} - a_{n} = \lg\frac{n + 1}{n}$,所以当$n \geq 2$时,$a_{n} = (a_{n} - a_{n - 1}) + (a_{n - 1} - a_{n - 2}) + ·s + (a_{2} - a_{1}) + a_{1} = \lg\frac{n}{n - 1} + \lg\frac{n - 1}{n - 2} + ·s + \lg\frac{2}{1} + 2 = \lg(\frac{n}{n - 1} · \frac{n - 1}{n - 2} ·s \frac{3}{2} · \frac{2}{1}) + 2 = \lg n + 2$.
又$a_{1} = 2 = \lg1 + 2$也符合所得通项公式,所以$a_{n} = \lg n + 2$.
(方法2)因为$a_{n + 1} = a_{n} + \lg(n + 1) - \lg n$,$a_{n + 1} - \lg(n + 1) = a_{n} - \lg n$,所以数列$\{ a_{n} - \lg n\}$是常数列,即$a_{n} - \lg n = a_{1} - \lg1 = 2$,故$a_{n} = 2 + \lg n$.
方法总结
递推公式为$a_{n + 1} - a_{n} = f(n)(f(n)$可求和)或能转化为$a_{n + 1} - a_{n} = f(n)(f(n)$可求和)的数列求通项公式,通常采用累加法$(a_{2} - a_{1}) + (a_{3} - a_{2}) + ·s + (a_{n} - a_{n - 1}) = a_{n} - a_{1}$求$a_{n}$
11.$[$2024重庆市育才中学校高二期末$]$已知$a_{1}=2,a_{n}=n(a_{n+1}-a_{n})$,则数列$\{ a_{n}\}$的通项公式是$a_{n}=($ $)$

A.$n$
B.$n+1$
C.$2n$
D.$(\frac{n+1}{n})^{n}$
答案: 11.C 解析:由$a_{n} = n(a_{n + 1} - a_{n})$,得$(n + 1)a_{n} = na_{n + 1}$,即$\frac{a_{n + 1}}{a_{n}} = \frac{n + 1}{n}$,$\frac{a_{n - 1}}{a_{n - 2}} = \frac{n - 1}{n - 2}$,$\frac{a_{n - 2}}{a_{n - 3}} = \frac{n - 2}{n - 3}$,$·s$,$\frac{a_{2}}{a_{1}} = \frac{2}{1}$.由累乘法可得$\frac{a_{n}}{a_{1}} = n$,因为$a_{1} = 2$,所以$a_{n} = 2n$
12. 已知数列$\{ a_{n}\}$满足$a_{1}=\sqrt{2},\sqrt{n}a_{n+1}=\sqrt{n+2}a_{n},n\in \mathbf{N}^{*}$,则数列$\{ a_{n}\}$的通项公式为
$a_{n} = \sqrt{n} · \sqrt{n + 1}$
.
答案: 12.$a_{n} = \sqrt{n} · \sqrt{n + 1}$ 解析:由$\sqrt{n}a_{n + 1} = \sqrt{n + 2}a_{n}$,得$\frac{a_{n + 1}}{a_{n}} = \frac{\sqrt{n + 2}}{\sqrt{n}}$,所以$\frac{a_{2}}{a_{1}} · \frac{a_{3}}{a_{2}} ·s \frac{a_{n}}{a_{n - 1}} = \frac{\sqrt{3}}{1} · \frac{\sqrt{4}}{\sqrt{2}} ·s \frac{\sqrt{n + 1}}{\sqrt{n - 1}}$,即$\frac{a_{n}}{a_{1}} = \frac{\sqrt{n} · \sqrt{n + 1}}{\sqrt{2}}$.因为$a_{1} = \sqrt{2}$,所以$a_{n} = \sqrt{n} · \sqrt{n + 1}$.
13.$[$瑞金一中2024江西高一检测$]$已知数列$\{ a_{n}\}$满足$a_{1}=2,a_{n+1}=2\frac{n+1}{n}a_{n}(n\in \mathbf{N}^{*})$,则数列$\{ a_{n}\}$的通项公式为
$a_{n} = n · 2^{n}$
.
答案: 13.$a_{n} = n · 2^{n}$ 解析:数列$\{ a_{n}\}$满足$a_{1} = 2$,$a_{n + 1} = 2^{(\frac{n + 1}{n})}a_{n}(n \in N^{*})$,则$a_{2} = 4a_{1} > 0$,$a_{3} = 2 × \frac{3}{2}a_{2} > 0$,···,依此类推,对任意的$n \in N^{*}$,$a_{n} > 0$,由已知条件可得$\frac{a_{n + 1}}{a_{n}} = \frac{2(n + 1)}{n}$,则$a_{n} = a_{1} · \frac{a_{2}}{a_{1}} · \frac{a_{3}}{a_{2}} ·s \frac{a_{n}}{a_{n - 1}} = 2 × \frac{2 × 2}{1} × \frac{2 × 3}{2} × ·s × \frac{2n}{n - 1} = n · 2^{n}$.
所以数列$\{ a_{n}\}$的通项公式为$a_{n} = n · 2^{n}$.
方法总结
递推公式为$\frac{a_{n + 1}}{a_{n}} = f(n)(f(n)$可求积)或能转化为$\frac{a_{n + 1}}{a_{n}} = f(n)(f(n)$可求积)的数列求通项公式,通常采用累乘法$\frac{a_{2}}{a_{1}} · \frac{a_{3}}{a_{2}} · \frac{a_{4}}{a_{3}} ·s \frac{a_{n}}{a_{n - 1}} = \frac{a_{n}}{a_{1}}$求$a_{n}$
14.$[$2024安徽滁州高二检测$]$已知数列$\{ a_{n}\}$满足$a_{n+2}+a_{n}=2a_{n+1}+1$,且$a_{1}=1,a_{2}=5$,则$a_{18}=$( $)$

A.$69$
B.$105$
C.$204$
D.$205$
答案: 14.D 解析:因为$a_{n + 2} + a_{n} = 2a_{n + 1}$,所以$(a_{n + 2} - a_{n + 1}) - (a_{n + 1} - a_{n}) = 1$,构造新数列.
且$a_{1} = 1$,$a_{2} = 5$,故$\{ a_{n + 1} - a_{n}\}$是以4为首项,1为公差的等差数列,所以$a_{18} - a_{1} = (a_{18} - a_{17}) + (a_{17} - a_{16}) + ·s + (a_{2} - a_{1}) = 17 + 16 + ·s + 1 + 3 × 17 + 1 = \frac{17 × (17 + 1)}{2} + 3 × 17 + 1 = 205$.
15.$[$实验中学2024山东省高二检测$]$已知数列$\{ a_{n}\}$满足$a_{n+1}=ka_{n}-1(n\in \mathbf{N}^{*},k\in \mathbf{R})$,若数列$\{ a_{n}-1\}$是等比数列,则$k=$( $)$

A.$1$
B.$-1$
C.$-2$
D.$2$
答案: 15.D 解析:(方法1)设等比数列$\{ a_{n} - 1\}$的公比为$q$,则$a_{n + 1} - 1 = q(a_{n} - 1)$,得$a_{n + 1} = qa_{n} + 1 - q$.
又$a_{n + 1} = ka_{n} - 1$,所以$\begin{cases} q = k, \\ 1 - q = - 1, \end{cases}$得$\begin{cases} q = 2, \\ k = 2. \end{cases}$
(方法2)依题意得$a_{2} - 1 = ka_{1} - 1 - 1 = k^{2}a_{1} - k - 1$,因为$\{ a_{n}\}$是等比数列,所以$(a_{2} - 1)^{2} = (a_{1} - 1) · (a_{3} - 1)$,即$(ka_{1} - 2)^{2} = (a_{1} - 1)(k^{2}a_{1} - k - 2)$,所以$(k - 2) · [a_{1}(k - 1) - 1] = 0$,由此式对任意实数$a_{1}$都成立,得$k - 2 = 0$,即$k = 2$,此时$a_{n + 1} = 2a_{n} - 1$,即$a_{n + 1} - 1 = 2(a_{n} - 1)$,即$\{ a_{n} - 1\}$是等比数列.
点评
由$\{ a_{n} - 1\}$是等比数列,求参数$k$的值,可用待定系数法,也可利用前三项是等比的关系,列出等式,求出参数$k$的值,再检验所得数列是否符合题意.
16. 已知数列$\{ a_{n}\}$满足$a_{n+1}=2a_{n}+3× 5^{n},a_{1}=2$,求数列$\{ a_{n}\}$的通项公式.
答案: 16.解:将递推关系式两边同除以$5^{n + 1}$,得$\frac{a_{n + 1}}{5^{n + 1}} = \frac{2}{5} × \frac{a_{n}}{5^{n}} + \frac{3}{5}$,进一步变形得$\frac{a_{n + 1}}{5^{n + 1}} - 1 = \frac{2}{5}(\frac{a_{n}}{5^{n}} - 1)$,
由于$\frac{a_{1}}{5^{1}} - 1 = - \frac{3}{5} \neq 0$,所以数列$\{\frac{a_{n}}{5^{n}} - 1\}$是以$- \frac{3}{5}$为首项,$\frac{2}{5}$为公比的等比数列,从而$\frac{a_{n}}{5^{n}} - 1 = - \frac{3}{5} × (\frac{2}{5})^{n - 1}$,所以数列$\{ a_{n}\}$的通项公式为$a_{n} = 5^{n} - 3 × 2^{n - 1}$.
方法总结
①递推公式为$a_{n + 1} = pa_{n} + rq^{n}$的数列,通常将$a_{n + 1} = pa_{n} + rq^{n}$化为$\frac{a_{n + 1}}{q^{n + 1}} = \frac{p · a_{n}}{q · q^{n}} + \frac{r}{q}$,构造辅助数列$\{ b_{n}\}$,$b_{n + 1} = \frac{p}{q}b_{n} + \frac{r}{q}$,再构造另一个数列;②递推公式为$a_{n} = \frac{m · a_{n - 1}}{k(a_{n - 1} + b)}(n \geq 2)$的数列,通常将$a_{n} = \frac{m · a_{n - 1}}{k(a_{n - 1} + b)}$两边取倒数得$\frac{1}{a_{n}} = \frac{kb}{m} · \frac{1}{a_{n - 1}} + \frac{k}{m}$,令$b_{n} = \frac{1}{a_{n}}$进行转化;③递推公式为$a_{n} = p · a_{n - 1}^{r}(n \geq 2, a_{n} > 0)$的数列,通常将$a_{n} = p · a_{n - 1}^{r}$化为$\lg a_{n} = \lg p + r\lg a_{n - 1}$.

查看更多完整答案,请扫码查看

关闭