2025年把关题高中数学选择性必修第二册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年把关题高中数学选择性必修第二册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年把关题高中数学选择性必修第二册人教版》

1. 记$S_{n}$为等比数列$\{ a_{n}\}$的前$n$项和.若$S_{2}=4$,$S_{4}=6$,则$S_{8}=$(
A
)

A.$\frac{15}{2}$
B.$8$
C.$7$
D.$\frac{17}{2}$
答案: 1.A 解析:$\because S_n$为等比数列$\{ a_n \}$的前n项和,$\therefore S_2 - S_1, S_3 - S_2, S_4 - S_3, S_6 - S_6$成等比数列. $\because S_2 = 4, S_4 = 6$,
$\therefore S_4 - S_2 = 6 - 4 = 2$,且新公比为$\frac{1}{2}$,$\therefore S_6 - S_4 = 1$, $\therefore S_6 = 1 + S_4 = 1 + 6 = 7$,$\therefore S_8 - S_6 = \frac{1}{2}$, $\therefore S_8 = \frac{1}{2} + S_6 = \frac{1}{2} + 7 = \frac{15}{2}$.
2. [北民大附中银川2024 高二检测]在各项均为正数的等比数列$\{ a_{n}\}$中,$a_{1}=2$且$a_{2}$,$a_{4}+2$,$a_{5}$成等差数列,记$S_{n}$是数列$\{ a_{n}\}$的前$n$项和,则$S_{5}=$(
B
)

A.$32$
B.$62$
C.$27$
D.$81$
答案: 2.B 解析:设各项均为正数的等比数列$\{ a_n \}$的公比为$q$, 又$a_1 = 2$,则$a_2 = 2q, a_4 + 2 = 2q^3 + 2, a_5 = 2q^4$. $\because a_2, a_4 + 2, a_5$成等差数列, $\therefore 4q^3 + 4 = 2q + 2q^4$,$\therefore 2(q^3 + 1) = q(q^3 + 1)$, 由$q > 0$,解得$q = 2$,$\therefore S_5 = \frac{2 × (1 - 2^5)}{1 - 2} = 62$.
3. [东北师大附中长春2024 高二中期中]若数列$\{ a_{n}\}$的前$n$项和为$S_{n}$,且满足$a_{1}=1$,$a_{n + 1} + a_{n} = 3 × 2^{n}$,则$S_{7}=$(
B
)

A.$61$
B.$253$
C.$1021$
D.$4092$
答案: 3.B 解析:由题意得$a_{n + 1} + a_n = 2 × 2^n + 2^n = 2^{n + 1} + 2^n$, 即$a_{n + 1} - 2^{n + 1} = - (a_n - 2^n)$, 构造新数列. $\therefore$数列$\{ a_n - 2^n \}$是首项为$a_1 - 2 = - 1$, 公比为$- 1$的等比数列, $\therefore a_n - 2^n = - 1 × ( - 1)^{n - 1}$,即$a_n = 2^n + ( - 1)^n (n \in \mathbf{N}^*)$, $\therefore S_7 = a_1 + a_2 + ·s + a_7 = 2 + ( - 1)^1 + 2^2 + ( - 1)^2 + ·s + 2^7 + ( - 1)^7 = \frac{2 × (1 - 2^7)}{1 - 2} - 1 × 4 + 1 × 3 = 253$.
4. [2024 石家庄高二开学考试]已知三角形数表如下:

现把数表按从上到下、从左到右的顺序展开为数列$\{ a_{n}\}$,则$a_{100} =$(
B
)

A.$3^{7}$
B.$3^{8}$
C.$3^{9}$
D.$3^{10}$
答案: 4.B 解析:由题表知,第一行有1个数,第二行有2个数……第n行有n个数,满足$\frac{n(1 + n)}{2} \leq 100 (n \in \mathbf{N}^*)$的$n$的最大值为13,所以前13行共有$\frac{13 × (1 + 13)}{2} = 91$个数,第100个数是第14行的第9个数,根据通项$3^{k - 1}$可知,第9个数是$3^{9 - 1} = 3^8$,即$a_{100} = 3^8$.故选B.
5. 等比数列$\{ a_{n}\}$的首项为$2$,项数为奇数,其奇数项之和为$\frac{85}{32}$,偶数项之和为$\frac{21}{16}$,记这个等比数列前$n$项的积为$T_{n}(n \geqslant 2)$,则$T_{n}$的最大值为(
D
)

A.$\frac{1}{4}$
B.$\frac{1}{2}$
C.$1$
D.$2$
答案: 5.D 解析:设等比数列$\{ a_n \}$共有$(2m + 1)$项, 由题意知$S_{奇} = a_1 + a_3 + ·s + a_{2m + 1} = \frac{85}{32}$,$S_{偶} = a_2 + a_4 + ·s + a_{2m} = \frac{21}{16}$, $S_{奇} = a_1 + a_1q + ·s + a_1q^{2m} = a_1(1 + q^2 + ·s + q^{2m}) = 2 + q(a_2 + a_4 + ·s + a_{2m}) = 2 + \frac{21}{16}q = \frac{85}{32}$,故$q = \frac{1}{2}$,故$T_n = a_1a_2·s a_n = a_1^nq^{1 + 2 + ·s + (n - 1)} = 2^n × \frac{1}{2^{\frac{n(n - 1)}{2}}} = 2^{3n - \frac{n^2}{2}} (n \geq 2)$. 因为当$n \geq 2$时,$T_n$递减,所以当$n = 2$时,$T_n$有最大值2.
6. [多选题]已知公比不为$1$的等比数列$\{ a_{n}\}$的前$n$项和为$S_{n}$,则下列一定成立的有(
BC
)

A.若$a_{3} > 0$,则$a_{2023} < 0$
B.若$a_{4} > 0$,则$a_{2022} > 0$
C.若$a_{1} + a_{3} > 0$,则$S_{2023} > 0$
D.若$a_{2} + a_{4} < 0$,则$S_{2022} < 0$
答案: 6.BC 解析:设等比数列$\{ a_n \}$的公比为$q (q \neq 1)$, 当$a_3 > 0$时,$a_{2023} = a_3q^{2020} > 0$,故A不成立; 当$a_7 > 0$时,$a_{2022} = a_7q^{2018} > 0$,故B一定成立;
等比数列通项公式推广$a_n = a_m · q^{n - m}$
当$a_1 + a_3 > 0$时,$a_1 + a_3q^2 = a_1 · (1 + q^2) > 0$,则$a_1 > 0$, 所以$S_{2023} = \frac{a_1(1 - q^{2023})}{1 - q}$,由$1 - q$与$1 - q^{2023}$同号, 所以$S_{2023} > 0$,故C一定成立; 当$a_7 + a_8 < 0$时,取数列$\{ a_n \}$为$1, - 1,1, - 1,·s$,则$S_{2022} = 0$, 故D不一定成立.
7. [临沂2024 高二期末]已知数列$\{ a_{n}\}$满足$a_{1} = 1$,$a_{n + 1} = 2a_{n} + 1(n \in \mathbf{N}^{*})$,记数列$\left\{ \frac{a_{n} + 1}{(a_{n} + 2)(a_{n + 1} + 2)} \right\}$的前$n$项和为$T_{n}$.若对于任意$n \in \mathbf{N}^{*}$,不等式$k > T_{n}$恒成立,则实数$k$的取值范围为(
C
)

A.$\left[ \frac{1}{2}, + \infty \right)$
B.$\left( \frac{1}{2}, + \infty \right)$
C.$\left[ \frac{1}{3}, + \infty \right)$
D.$\left( \frac{1}{3}, + \infty \right)$
答案: 7.C 解析:由已知可得,$a_{n + 1} + 1 = 2(a_n + 1)$, 又$a_1 = 1$,则$a_1 + 1 = 2$, 所以数列$\{ a_n + 1 \}$是首项为2, 公比为2的等比数列,则$a_{n + 1} = 2^n$,即$a_n = 2^n - 1$.
所以$\frac{a_n + 1}{(a_n + 2)(a_{n + 1} + 2)} = \frac{2^n}{(2^n + 1)(2^{n + 1} + 1)} = \frac{1}{2^n + 1} - \frac{1}{2^{n + 1} + 1}$
所以$T_n = \frac{1}{2^1 + 1} - \frac{1}{2^2 + 1} + \frac{1}{2^2 + 1} - \frac{1}{2^3 + 1} + ·s + \frac{1}{2^n + 1} - \frac{1}{2^{n + 1} + 1} = \frac{1}{3} - \frac{1}{2^{n + 1} + 1} < \frac{1}{3}$,
所以实数$k$的取值范围是$[\frac{1}{3}, +\infty)$.
8. [多选题]已知数列$\{ a_{n}\}$满足$a_{1} = 1$,$a_{n + 1} = \lg(10^{a_{n}} + 9) + 1$,其前$n$项和为$S_{n}$,则下列结论中正确的有(
ACD
)

A.$\{ a_{n}\}$是递增数列
B.$\{ a_{n} + 10\}$是等比数列
C.$2a_{n + 1} > a_{n} + a_{n + 2}$
D.$S_{n} < \frac{n(n + 3)}{2}$
答案: 8.ACD 解析:因为$a_{n + 1} = \lg(10^{a_n} + 9) + 1$,所以$10^{a_{n + 1}} = 10^{\lg(10^{a_n} + 9) + 1} = 10 × (10^{a_n} + 10)$,令$b_n = 10^{a_n} + 10$,则$b_{n + 1} = 10b_n$, 即$\{ b_n \}$是以10为公比的等比数列,$b_1 = 20$,故$b_n = 2 × 10^n$,所以$a_n = \lg(2 × 10^n - 10)$是递增数列,A正确. 因为$\frac{a_{n + 1} + 10}{a_n + 10} = \frac{\lg(2 × 10^{n + 1} - 10) + 10}{\lg(2 × 10^n - 10) + 10} \neq$常数,所以$\{ a_n + 10 \}$不是等比数列,B错误.
因为$2a_{n + 1} = \lg[4 × 10^{2n + 2} + 100 - 40 × 10^{n + 1}], a_n + a_{n + 2} = \lg[(2 × 10^n - 10)(2 × 10^{n + 2} - 10)] = \lg[4 × 10^{2n + 2} + 100 - 20(10^n + 10^{n + 2})]$,又$10^n + 10^{n + 2} > 2\sqrt{10^{2n + 2}} = 2 × 10^{n + 1}$,所以$a_n + a_{n + 2} < 2a_{n + 1}$,C正确.
令$c_n = n + 1$,则其前$n$项和为$\frac{n(n + 3)}{2}$,而$a_n = \lg(2 × 10^n - 10) < \lg(2 × 10^n) = \lg 2 + n$,故$S_n < \frac{n(n + 3)}{2}$, D正确.
故选ACD.
9. [教材55 页3 题(3)变式]在2022 北京冬奥会开幕式上,一朵朵六角雪花飘拂在国家体育场上空,畅想着“一起向未来”的美好愿景.如图是“雪花曲线”的一种形成过程:从一个正三角形开始,把每条边分成三等份,然后以各边的中间一段为底边分别向外作正三角形,再去掉底边,重复进行这一过程.若第$1$个图中的三角形的周长为$1$,记第$n$个图形的周长为$a_{n}$,$S_{n}$为数列$\{ na_{n}\}$的前$n$项和,则$S_{n} =$(
A
)


A.$(3n - 9)\left( \frac{4}{3} \right)^{n} + 9$
B.$(3n + 9)\left( \frac{4}{3} \right)^{n} - 15$
C.$(3n - 9)\left( \frac{4}{3} \right)^{n - 1} + 7$
D.$(3n + 9)\left( \frac{4}{3} \right)^{n - 1} - 9$
答案: 9.A 解析:由题意知,当$n = 1$时,第1个图中的三角形的边长为$\frac{1}{3}$,三角形的周长为$a_1 = 3 × \frac{1}{3} = 1$; 当$n = 2$时,第2个图中“雪花曲线”的边长为$\frac{1}{3} × \frac{1}{3} = (\frac{1}{3})^2$,共有$3 × 4$条边,周长为$a_2 = 3 × 4 × (\frac{1}{3})^2 = \frac{4}{3}$;当$n = 3$时,第3个图中“雪花曲线”的边长为$\frac{1}{3} × \frac{1}{3} × \frac{1}{3} = (\frac{1}{3})^3$,共有$3 × 4^2$条边,周长为$a_3 = 3 × 4^2 × (\frac{1}{3})^3 = (\frac{4}{3})^2$,$·s$,$a_n = (\frac{4}{3})^{n - 1}$,所以$n · a_n = n × (\frac{4}{3})^{n - 1}$.
于是$S_n = 1 × 1 + 2 × (\frac{4}{3})^1 + 3 × (\frac{4}{3})^2 + ·s + n × (\frac{4}{3})^{n - 1}$,①
$\frac{4}{3}S_n = 1 × \frac{4}{3} + 2 × (\frac{4}{3})^2 + 3 × (\frac{4}{3})^3 + ·s + n × (\frac{4}{3})^n$,②
由①$-$②,得$-\frac{1}{3}S_n = 1 + \frac{4}{3} + (\frac{4}{3})^2 + ·s + (\frac{4}{3})^{n - 1} - n × (\frac{4}{3})^n = \frac{1 - (\frac{4}{3})^n}{1 - \frac{4}{3}} - n × (\frac{4}{3})^n$,则$S_n = (3n - 9)(\frac{4}{3})^n + 9$.
10. 已知等比数列$\{ a_{n}\}$的前$n$项和为$S_{n}$,$S_{n} = 2^{n} - a$,则$a =$
1
;$\frac{1}{a_{2021}} + \frac{1}{a_{2023}}$
$\frac{2}{a_{2022}}$(填“$>$”“$=$”或“$<$”).
答案: 10.1 > 解析:当$n = 1$时,$a_1 = S_1 = 2 - a$; 当$n = 2$时,$S_2 = a_1 + a_2 = 4 - a$,解得$a_2 = 2$; 当$n = 3$时,$S_3 = a_1 + a_2 + a_3 = 8 - a$,解得$a_3 = 4$.
由$\{ a_n \}$是等比数列,得$\frac{a_2}{a_1} = \frac{a_3}{a_2}$,则$a_1 = 2 - a = 1$, 解得$a = 1$.
根据等比数列的性质可得$a_{2021} · a_{2023} = a_{2022}^2$
又易得$a_n > 0 (n \in \mathbf{N}^*)$,所以$\frac{1}{a_{2021}} + \frac{1}{a_{2023}} \geq 2\sqrt{\frac{1}{a_{2021} · a_{2023}}} = \frac{2}{a_{2022}}$(当且仅当$a_{2021} = a_{2023}$时,等号成立).
因为$q = \frac{a_2}{a_1} = 2$,所以$a_{2021} \neq a_{2022}$, 所以$\frac{1}{a_{2021}} + \frac{1}{a_{2023}} > \frac{2}{a_{2022}}$.

查看更多完整答案,请扫码查看

关闭