2025年把关题高中数学选择性必修第二册人教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年把关题高中数学选择性必修第二册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
11. 给定$a_{n} = \log_{n + 1}(n + 2)(n \in \mathbf{N}^{*})$,使乘积$a_{1}a_{2}·s a_{k}$为整数的$k(k \in \mathbf{N}^{*})$称为“理想数”,则在$k \in [1,2046]$内的所有“理想数”的和为
4072
.
答案:
11.4072 解析:$\because a_n = \log_{n + 1}(n + 2) (n \in \mathbf{N}^*)$, $\therefore$由$a_1a_2·s a_k$为整数知$\log_3 × \log_4 × ·s × \log_{k + 1}(k + 2) × \log_{k + 1}(k + 2) = \log_2(k + 2)$为整数.
换底公式$\log_b · \log_c = \log_c$
设$\log_2(k + 2) = m$,则$k + 2 = 2^m$,则$k = 2^m - 2$.
$\because 2^{11} - 2 = 2046$,$\therefore k \in [1,2046]$内所有的“理想数”为$2^2 - 2,2^3 - 2,2^4 - 2,·s,2^{10} - 2,2^{11} - 2$,其和$M = 2^2 - 2 + 2^3 - 2 + 2^4 - 2 + ·s + 2^{11} - 2 = \frac{4 × (1 - 2^{10})}{1 - 2} - 20 = 4072$.
换底公式$\log_b · \log_c = \log_c$
设$\log_2(k + 2) = m$,则$k + 2 = 2^m$,则$k = 2^m - 2$.
$\because 2^{11} - 2 = 2046$,$\therefore k \in [1,2046]$内所有的“理想数”为$2^2 - 2,2^3 - 2,2^4 - 2,·s,2^{10} - 2,2^{11} - 2$,其和$M = 2^2 - 2 + 2^3 - 2 + 2^4 - 2 + ·s + 2^{11} - 2 = \frac{4 × (1 - 2^{10})}{1 - 2} - 20 = 4072$.
12. [2024 合肥高二中期中]已知等差数列$\{ a_{n}\}$的首项为$1$,且$a_{n} > 0$,.
①$S_{n}$是数列$\{ a_{n}\}$的前$n$项和且$S_{11} = 66$;
②$a_{3}$,$a_{9}$,$9a_{3}$成等比数列;
③$S_{n} - na_{n} = \frac{n - n^{2}}{2}$,其中$S_{n}$是数列$\{ a_{n}\}$的前$n$项和.
在这三个条件中选择一个,补充在横线上,并进行解答.
(1) 求数列$\{ a_{n}\}$的通项公式;
(2) 若$b_{n} = 3^{a_{n}} + 2a_{n}$,求数列$\{ b_{n}\}$的前$n$项和$T_{n}$.
①$S_{n}$是数列$\{ a_{n}\}$的前$n$项和且$S_{11} = 66$;
②$a_{3}$,$a_{9}$,$9a_{3}$成等比数列;
③$S_{n} - na_{n} = \frac{n - n^{2}}{2}$,其中$S_{n}$是数列$\{ a_{n}\}$的前$n$项和.
在这三个条件中选择一个,补充在横线上,并进行解答.
(1) 求数列$\{ a_{n}\}$的通项公式;
(2) 若$b_{n} = 3^{a_{n}} + 2a_{n}$,求数列$\{ b_{n}\}$的前$n$项和$T_{n}$.
答案:
12.解:
(1)若选择①:设$\{ a_n \}$的公差为$d$,因为$S_{11} = 66$, $a_1 = 1$,所以$11 + \frac{11 × 10}{2} × d = 66$,所以$d = 1$,所以$a_n = a_1 + (n - 1)d = n$.
若选择②:因为$a_3, a_9, 9a_3$成等比数列,所以$a_9^2 = 9a_3^2$. 又$a_n > 0$,所以$a_9 = 3a_3$.
又$a_1 = 1$,设$\{ a_n \}$的公差为$d (d > 0)$, 所以$1 + 8d = 3(1 + 2d)$, 解得$d = 1$,所以$a_n = a_1 + (n - 1)d = n$.
若选择③:设$\{ a_n \}$的公差为$d$,因为$S_n - na_n = \frac{n - n^2}{2}$, 所以$na_1 + \frac{n(n - 1)}{2}d - n[a_1 + (n - 1)d] = \frac{n - n^2}{2}$
又$a_1 = 1$,即$n + \frac{n(n - 1)}{2}d - n - n(n - 1)d = \frac{n - n^2}{2} d = \frac{n - n^2}{2}$, 解得$d = 1$,所以$a_n = a_1 + (n - 1)d = n$.
(2)由题意及
(1)知$b_n = 3^n + 2a_n = 3^n + 2n$
所以$T_n = (3 + 2) + (3^2 + 4) + ·s + (3^n + 2n) = 3 + 3^2 + ·s + 3^n + 2 + 4 + ·s + 2n = \frac{3^{n + 1} - 3}{1 - 3} + \frac{2 + 2n}{2} × n = \frac{3^{n + 1} - 3}{2} + n^2 + n$,
所以$T_n = \frac{3^{n + 1} + 2n^2 + 2n - 3}{2}$
方法总结
数列求和的方法技巧
(1)倒序相加法:用于等差数列或与对称性相关联的数列的求和.
(2)错位相减法:用于等差数列与等比数列的积数列的求和.
(3)分组求和法:用于若干个等差或等比数列的和或差的数列求和.
(1)若选择①:设$\{ a_n \}$的公差为$d$,因为$S_{11} = 66$, $a_1 = 1$,所以$11 + \frac{11 × 10}{2} × d = 66$,所以$d = 1$,所以$a_n = a_1 + (n - 1)d = n$.
若选择②:因为$a_3, a_9, 9a_3$成等比数列,所以$a_9^2 = 9a_3^2$. 又$a_n > 0$,所以$a_9 = 3a_3$.
又$a_1 = 1$,设$\{ a_n \}$的公差为$d (d > 0)$, 所以$1 + 8d = 3(1 + 2d)$, 解得$d = 1$,所以$a_n = a_1 + (n - 1)d = n$.
若选择③:设$\{ a_n \}$的公差为$d$,因为$S_n - na_n = \frac{n - n^2}{2}$, 所以$na_1 + \frac{n(n - 1)}{2}d - n[a_1 + (n - 1)d] = \frac{n - n^2}{2}$
又$a_1 = 1$,即$n + \frac{n(n - 1)}{2}d - n - n(n - 1)d = \frac{n - n^2}{2} d = \frac{n - n^2}{2}$, 解得$d = 1$,所以$a_n = a_1 + (n - 1)d = n$.
(2)由题意及
(1)知$b_n = 3^n + 2a_n = 3^n + 2n$
所以$T_n = (3 + 2) + (3^2 + 4) + ·s + (3^n + 2n) = 3 + 3^2 + ·s + 3^n + 2 + 4 + ·s + 2n = \frac{3^{n + 1} - 3}{1 - 3} + \frac{2 + 2n}{2} × n = \frac{3^{n + 1} - 3}{2} + n^2 + n$,
所以$T_n = \frac{3^{n + 1} + 2n^2 + 2n - 3}{2}$
方法总结
数列求和的方法技巧
(1)倒序相加法:用于等差数列或与对称性相关联的数列的求和.
(2)错位相减法:用于等差数列与等比数列的积数列的求和.
(3)分组求和法:用于若干个等差或等比数列的和或差的数列求和.
13. [2024 杭州二中高二中期中联考]数列$\{ a_{n}\}$满足:$a_{1} = 3$,$a_{n + 1} = a_{n} + 4n + 3$,等比数列$\{ b_{n}\}$的前$n$项和为$S_{n}$,$S_{n} = c · 3^{n + 1} - \frac{3}{2}$.
(1) 求数列$\{ a_{n}\}$,$\{ b_{n}\}$的通项公式;
(2) 若数列$\left\{ \frac{a_{n}}{nb_{n}} \right\}$的前$n$项和为$T_{n}$,证明$T_{n} < 2$.
(1) 求数列$\{ a_{n}\}$,$\{ b_{n}\}$的通项公式;
(2) 若数列$\left\{ \frac{a_{n}}{nb_{n}} \right\}$的前$n$项和为$T_{n}$,证明$T_{n} < 2$.
答案:
13.
(1)解:由数列$\{ a_n \}$满足$a_{n + 1} = a_n + 4n + 3$得, 当$n \geq 2$时,$a_n - a_{n - 1} = 4n - 1$, 所以$a_n = (a_n - a_{n - 1}) + (a_{n - 1} - a_{n - 2}) + ·s + (a_2 - a_1) + a_1 = (4n - 1) + (4n - 5) + ·s + 7 + 3 = 2n^2 + n$.
当$n = 1$时,$a_1 = 3$满足上式, 所以数列$\{ a_n \}$的通项公式为$a_n = 2n^2 + n$.
由$S_n = c · 3^{n + 1} - \frac{3}{2}$,
可得$S_{n - 1} = c · 3^n - \frac{3}{2}, n \geq 2$,
两式相减,可得$b_n = c · 3^{n + 1} - c · 3^n = 2c · 3^n, n \geq 2$,
当$n = 1$时,$b_1 = S_1 = c · 3^2 - \frac{3}{2}$也符合上式, 所以$9c - \frac{3}{2} = 2c × 3$,解得$c = \frac{1}{2}$,
此时$b_n = 3^n$,所以数列$\{ b_n \}$的通项公式为$b_n = 3^n$.
(2)证明:由$a_n = 2n^2 + n, b_n = 3^n$,可得$\frac{a_n}{nb_n} = \frac{2n^2 + n}{n · 3^n} = \frac{2n + 1}{3^n}$, 则$T_n = \frac{3}{3} + \frac{5}{3^2} + \frac{7}{3^3} + ·s + \frac{2n - 1}{3^{n - 1}} + \frac{2n + 1}{3^n}$
可得$\frac{1}{3}T_n = \frac{3}{3^2} + \frac{5}{3^3} + \frac{7}{3^4} + ·s + \frac{2n - 1}{3^n} + \frac{2n + 1}{3^{n + 1}}$,
两式相减,可得$\frac{2}{3}T_n = 1 + \frac{2}{3^2} + \frac{2}{3^3} + ·s + \frac{2}{3^n} - \frac{2n + 1}{3^{n + 1}} = \frac{1 + 2 · \frac{\frac{1}{3}[1 - (\frac{1}{3})^{n - 1}]}{1 - \frac{1}{3}}}{1 - \frac{1}{3}} - \frac{2n + 4}{3^{n + 1}}$,
所以$T_n = 2 - \frac{n + 2}{3^n}$
因为$\frac{n + 2}{3^n} > 0$,所以$T_n = 2 - \frac{n + 2}{3^n} < 2$.
(1)解:由数列$\{ a_n \}$满足$a_{n + 1} = a_n + 4n + 3$得, 当$n \geq 2$时,$a_n - a_{n - 1} = 4n - 1$, 所以$a_n = (a_n - a_{n - 1}) + (a_{n - 1} - a_{n - 2}) + ·s + (a_2 - a_1) + a_1 = (4n - 1) + (4n - 5) + ·s + 7 + 3 = 2n^2 + n$.
当$n = 1$时,$a_1 = 3$满足上式, 所以数列$\{ a_n \}$的通项公式为$a_n = 2n^2 + n$.
由$S_n = c · 3^{n + 1} - \frac{3}{2}$,
可得$S_{n - 1} = c · 3^n - \frac{3}{2}, n \geq 2$,
两式相减,可得$b_n = c · 3^{n + 1} - c · 3^n = 2c · 3^n, n \geq 2$,
当$n = 1$时,$b_1 = S_1 = c · 3^2 - \frac{3}{2}$也符合上式, 所以$9c - \frac{3}{2} = 2c × 3$,解得$c = \frac{1}{2}$,
此时$b_n = 3^n$,所以数列$\{ b_n \}$的通项公式为$b_n = 3^n$.
(2)证明:由$a_n = 2n^2 + n, b_n = 3^n$,可得$\frac{a_n}{nb_n} = \frac{2n^2 + n}{n · 3^n} = \frac{2n + 1}{3^n}$, 则$T_n = \frac{3}{3} + \frac{5}{3^2} + \frac{7}{3^3} + ·s + \frac{2n - 1}{3^{n - 1}} + \frac{2n + 1}{3^n}$
可得$\frac{1}{3}T_n = \frac{3}{3^2} + \frac{5}{3^3} + \frac{7}{3^4} + ·s + \frac{2n - 1}{3^n} + \frac{2n + 1}{3^{n + 1}}$,
两式相减,可得$\frac{2}{3}T_n = 1 + \frac{2}{3^2} + \frac{2}{3^3} + ·s + \frac{2}{3^n} - \frac{2n + 1}{3^{n + 1}} = \frac{1 + 2 · \frac{\frac{1}{3}[1 - (\frac{1}{3})^{n - 1}]}{1 - \frac{1}{3}}}{1 - \frac{1}{3}} - \frac{2n + 4}{3^{n + 1}}$,
所以$T_n = 2 - \frac{n + 2}{3^n}$
因为$\frac{n + 2}{3^n} > 0$,所以$T_n = 2 - \frac{n + 2}{3^n} < 2$.
查看更多完整答案,请扫码查看