2025年把关题高中数学选择性必修第二册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年把关题高中数学选择性必修第二册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年把关题高中数学选择性必修第二册人教版》

1. [2024河南开封高二检测]已知等差数列$\{ a_{n}\}$的前$n$项和为$S_{n}$,若$\frac{S_{5}}{S_{11}} = 3$,则$\frac{a_{3}}{a_{6}} =$ (
C
)

A.$\frac{11}{2}$
B.$\frac{11}{3}$
C.$\frac{33}{5}$
D.$\frac{22}{5}$
答案: 1.C 解析:$\because$等差数列$\{ a_{n}\}$的前$n$项和为$S_{n}$,$\frac{S_{5}}{S_{11}}=3$,$\therefore\frac{\frac{5(a_{1}+a_{5})}{2}}{\frac{11(a_{1}+a_{11})}{2}}=\frac{5(a_{1}+a_{5})}{11(a_{1}+a_{11})}=3$,$\therefore\frac{a_{3}}{a_{6}}=\frac{33}{5}$;$\frac{a_{3}}{a_{6}}=\frac{33}{5}$,$\therefore a_{6}=\frac{5}{33}a_{3}$.
2. [2024湖北十堰一中高二检测]设$S_{n}$是等差数列$\{ a_{n}\}$的前$n$项和,若$\frac{S_{5}}{S_{10}} = \frac{1}{3}$,则$\frac{S_{5}}{S_{20} + S_{10}} =$ (
B
)

A.$\frac{1}{12}$
B.$\frac{1}{13}$
C.$\frac{1}{14}$
D.$\frac{1}{15}$
答案: 2.B 解析:令$S_{5}=t$,则由$\frac{S_{5}}{S_{10}}=\frac{1}{3}$,得$S_{10}=3t$,故$S_{10}-S_{5}=2t$.又由等差数列的性质得$S_{5}$,$S_{10}-S_{5}$,$S_{15}-S_{10}$,$S_{20}-S_{15}$成等差数列,故有$S_{10}-S_{5}=2t$,$S_{15}-S_{10}=3t$,$S_{20}-S_{15}=4t$,相加可得$S_{20}-S_{5}=9t$,所以$\frac{S_{5}}{S_{20}+S_{10}}=\frac{t}{10t + 3t}=\frac{1}{13}$.
3. 记$S_{n}$为数列$\{ a_{n}\}$的前$n$项和,已知点$(n,a_{n})$在直线$y = 10 - 2x$上,若有且只有两个正整数$n$满足$S_{n} \geqslant k$,则实数$k$的取值范围是(
C
)

A.$(8,14]$
B.$(14,18]$
C.$(18,20]$
D.$\left(18,\frac{81}{4}\right]$
答案: 3.C 解析:由已知可得$a_{n}=10 - 2n$,因为$a_{n}-a_{n - 1}=-2$,所以数列$\{ a_{n}\}$为等差数列,且首项为8,公差为$-2$,所以$S_{n}=8n+\frac{n(n - 1)}{2}×(-2)=-n^{2}+9n$,当$n = 4$或5时,$S_{n}$取得最大值20.因为有且只有两个正整数$n$满足$S_{n}\geq k$,所以满足条件的$n$的值为4和5.因为$S_{4}=S_{5}=18$,所以实数$k$的取值范围是$(18,20]$.
4. [多选题][2024河南南阳六校高二期中]已知等差数列$\{ a_{n}\}$的前$n$项和为$S_{n}$,若$S_{11} = \frac{a_{5} + a_{7}}{2}$,则(
ABC
)

A.$S_{11} = 0$
B.$a_{6} = 0$
C.$S_{6} = S_{5}$
D.$S_{7} = S_{6}$
答案: 4.ABC 解析:因为$\{ a_{n}\}$是等差数列,所以$a_{5}+a_{7}=a_{1}+a_{11}=2a_{6}$.因为$S_{11}=\frac{a_{1}+a_{11}}{2}=a_{6}$,又$S_{11}=\frac{11(a_{1}+a_{11})}{2}=11a_{6}$,所以$11a_{6}=a_{6}$,从而$a_{6}=0$,$S_{11}=0$,故选项A,B正确.又$a_{6}=S_{6}-S_{5}=0$,所以$S_{6}=S_{5}$,故选项C正确.对于选项D,$S_{7}-S_{6}=a_{7}$,根据题意无法判断$a_{7}$是不是零,故选项D错误.故选ABC.
5. [多选题]已知数列$\{ a_{n}\}$为等差数列,其前$n$项和为$S_{n}$,且$2a_{1} + 4a_{3} = S_{7}$,则以下结论正确的有(
ACD
)

A.$a_{14} = 0$
B.$S_{14}$最小
C.$S_{11} = S_{16}$
D.$S_{27} = 0$
答案: 5.ACD 解析:因为数列$\{ a_{n}\}$为等差数列,设其公差为$d$,由于$2a_{1}+4a_{4}=S_{7}$,即$6a_{1}+8d = 7a_{1}+21d$,即$a_{1}+13d = a_{14}=0$,故A正确;当$d<0$时,$S_{n}$没有最小值,故B错误;因为$S_{16}-S_{1}=a_{2}+a_{3}+a_{4}+a_{5}+a_{16}=5a_{4}=0$,所以$S_{11}=S_{16}$,故C正确;$S_{27}=\frac{27(a_{1}+a_{27})}{2}=27a_{14}=0$,故D正确.故选ACD.
6. [多选题]设等差数列$\{ a_{n}\}$的前$n$项和为$S_{n}$,公差为$d$,已知$a_{3} = 12,S_{12} > 0,S_{13} < 0$,则下列结论正确的有(
BD
)

A.$a_{6} + a_{7} < 0$
B.$a_{7} < 0$
C.$d$可以取负整数
D.对任意$n \in \mathbf{N}^{*}$,有$S_{n} \leqslant S_{6}$
答案: 6.BD 解析:因为$S_{12}=12a_{1}+\frac{12×11}{2}· d>0$,$S_{13}=13a_{1}+\frac{13×12}{2}· d<0$,所以$2a_{1}+11d>0$,$a_{1}+6d<0$,即$a_{1}+a_{7}>0$,$a_{6}+a_{7}<0$,所以$a_{6}>0$,$a_{7}<0$,所以对任意$n\in N^{*}$,有$S_{n}\leq S_{6}$.综上可知BD正确.
7. 已知$S_{n}$为等差数列$\{ a_{n}\}$的前$n$项和,$S_{n} = m$,$S_{m} = n(n \neq m)$,则$S_{m + n} =$
$-m - n$
.
答案: 7.$-m - n$解析:(方法1)令$S_{n}=An^{2}+Bn(A$,$B$为常数,$n\in N^{*})$,则$\begin{cases}An^{2}+Bn = m,\\Am^{2}+Bm = n.\end{cases}$$\because n\neq m$,$\therefore A(n + m)+B=-1$,$\therefore S_{m + n}=A(m + n)^{2}+B(m + n)=-m - n$.\n(方法2)不妨设$m>n$,则$S_{m}-S_{n}=a_{n + 1}+a_{n + 2}+a_{n + 3}+·s+a_{m - 1}+a_{m}=\frac{(m - n)(a_{n + 1}+a_{m})}{2}=n - m$,$\therefore a_{n + 1}+a_{m}=-2$,$\therefore S_{m + n}=\frac{(m + n)(a_{1}+a_{m + n})}{2}=-m - n$.\n(方法3)$\because\{ a_{n}\}$是等差数列,$\therefore\{\frac{S_{n}}{n}\}$也为等差数列,设其公差为$D$.$\therefore\frac{S_{m + n}}{m + n}-\frac{S_{m}}{m}=nD$,$\frac{S_{n}}{n}-\frac{S_{m}}{m}=(n - m)D$,$\therefore\frac{m}{n}-\frac{n}{m}=\frac{S_{m + n}}{n}-\frac{n}{m}·\frac{S_{m + n}}{n}$,解得$S_{m + n}=-m - n$.
8. 已知数列$\{ a_{n}\}$满足$a_{1} = 1,a_{n} + a_{n + 1} = (-1)^{n}n$,$a_{101} =$
5051
.
答案: 8.5051 解析:当$n = 2k$,$k\in N^{*}$时,$a_{2k}+a_{2k + 1}=2k$①,当$n = 2k - 1$,$k\in N^{*}$时,$a_{2k - 1}+a_{2k}=-(2k - 1)$②,由①-②得$a_{2k + 1}-a_{2k - 1}=4k - 1$,所以$a_{101}=(a_{101}-a_{99})+(a_{99}-a_{97})+·s+(a_{3}-a_{1})+a_{1}=(4×50 - 1)+(4×49 - 1)+·s+(4×1 - 1)+1=4×(50 + 49+·s+1)-50×1 + 1=4×\frac{(50 + 1)×50}{2}-50 + 1=5051$.
9. [2024上海建平中学高二检测]公差不为零的等差数列$\{ a_{n}\}$满足$a_{15} = a_{3}a_{5},a_{1} = -2$.
(1)求数列$\{ a_{n}\}$的通项公式;
(2)记数列$\{ a_{n}\}$的前$n$项和为$S_{n}$,求使$S_{n} < a_{n}$成立的最大正整数$n$.
答案: 9.解:
(1)$a_{15}=a_{1}a_{14}$,即$-2 + 14d=(-2 + 2d)(-2 + 4d)$,解得$d = 3$或$d=\frac{1}{4}$.又$a_{1}=-2$,故$a_{n}=3n - 5$或$a_{n}=\frac{1}{4}n-\frac{9}{4}$.\n
(2)①当$a_{n}=3n - 5$时,$S_{n}=\frac{(3n - 5 - 2)· n}{2}=\frac{3n^{2}-7n}{2}$.因为$S_{n}<a_{n}$,所以$\frac{3n^{2}-7n}{2}<3n - 5$,解得$1<n<\frac{10}{3}$.又$n\in N^{*}$,故使$S_{n}<a_{n}$成立的最大正整数$n = 3$.②当$a_{n}=\frac{1}{4}n-\frac{9}{4}$时,$S_{n}=\frac{(\frac{1}{4}n-\frac{9}{4}-2)· n}{2}=\frac{1}{8}n^{2}-\frac{17}{8}n$.因为$S_{n}<a_{n}$,所以$\frac{1}{8}n^{2}-\frac{17}{8}n<\frac{1}{4}n-\frac{9}{4}$,解得$1<n<\frac{1}{4}n-\frac{9}{4}$,解得$1<n<18$.又$n\in N^{*}$,故使$S_{n}<a_{n}$成立的最大正整数$n = 17$.综上,当$a_{n}=3n - 5$时,$n = 3$;当$a_{n}=\frac{1}{4}n-\frac{9}{4}$时,$n = 17$.
10. [2024江苏常州高二检测]已知数列$\{ a_{n}\}$中,$a_{n} > 0,S_{n}$是数列$\{ a_{n}\}$的前$n$项和,且$a_{n} + \frac{2}{a_{n}} = 2S_{n}$,
(1)求$S_{2},S_{3}$,并求数列$\{ a_{n}\}$的通项公式;
(2)设$b_{n} = \frac{1}{S_{n} + S_{n + 2}}$,数列$\{ b_{n}\}$的前$n$项和为$T_{n}$,若$2\sqrt{2}T_{n} - k \geqslant 0$对任意的正整数$n$都成立,求实数$k$的取值范围.
答案: 10.解:
(1)由$a_{n}>0$,$S_{n}$是数列$\{ a_{n}\}$的前$n$项和,且$a_{n}+\frac{2}{a_{n}}=2S_{n}$,可得$2a_{n}=a_{n}+\frac{2}{a_{n}}$,解得$a_{n}=\sqrt{2}$(负值已舍去).由$2(2 + a_{3})=a_{3}+\frac{2}{a_{3}}$,解得$a_{3}=\sqrt{6}-2$(负值已舍去),$\therefore S_{3}=\sqrt{6}$.\n$\because$当$n\geq2$时,$a_{n}=S_{n}-S_{n - 1}\rightarrow$前提不可省略.\n$\therefore S_{n}-S_{n - 1}+\frac{2}{S_{n}-S_{n - 1}}=2S_{n}$,$\therefore S_{n}^{2}-S_{n - 1}^{2}=2$,$\therefore S_{n}^{2}=2 + 2(n - 1)=2n$.$\because a_{n}>0$,$\therefore S_{n}=\sqrt{2n}$.$\because a_{n}+\frac{2}{a_{n}}=2S_{n}=2\sqrt{2n}$,$\therefore a_{n}=\sqrt{2}(\sqrt{n}\pm\sqrt{n - 1})$.又$a_{2}=2-\sqrt{2}$,$\therefore a_{n}=\sqrt{2}(\sqrt{n}-\sqrt{n - 1})$.\n
(2)由$b_{n}=\frac{1}{S_{n}+S_{n + 2}}=\frac{1}{\sqrt{2n}+\sqrt{2n + 4}}=\frac{1}{2\sqrt{2}}(\sqrt{n + 2}-\sqrt{n})\rightarrow$分母有理化.可得$T_{n}=\frac{1}{2\sqrt{2}}(\sqrt{3}-1+\sqrt{4}-\sqrt{2}+\sqrt{5}-\sqrt{3}+·s+\sqrt{n + 1}-\sqrt{n - 1}+\sqrt{n + 2}-\sqrt{n})=\frac{1}{2\sqrt{2}}(\sqrt{n + 1}+\sqrt{n + 2}-1-\sqrt{2})$.由$T_{n + 1}-T_{n}=\frac{1}{2\sqrt{2}}(\sqrt{n + 3}-\sqrt{n + 1})>0$,可得$T_{n}$的最小值为$T_{1}=\frac{\sqrt{3}-1}{2\sqrt{2}}$.由$2\sqrt{2}T_{n}-k\geq0$对任意的正整数$n$都成立,可得$k\leq2\sqrt{2}T_{1}=\sqrt{3}-1$,故实数$k$的取值范围为$(-\infty,\sqrt{3}-1]$.

查看更多完整答案,请扫码查看

关闭