2025年把关题高中数学选择性必修第二册人教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年把关题高中数学选择性必修第二册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
1. [ 2024 全国甲卷]等差数列 $\{ a$${ n } \}$ 的前 $n$ 项和为 $S$${ n }$,若 $S$${ 5 } = S$${ 1 0 } , a$${ 5 } = 1$,则 $a$${ 1 } = ( \quad )$
A.$- 2$
B.$\frac { 7 } { 3 }$
C.$1$
D.$2$
A.$- 2$
B.$\frac { 7 } { 3 }$
C.$1$
D.$2$
答案:
1.B 解析:由$S_{10}-S_5=a_6+a_7+a_8+a_9+a_{10}=5a_8=0$,得$a_8=0$,则等差数列$\{ a_n\}$的公差$d=\frac{a_8 - a_5}{8 - 5}=-\frac{1}{3}$,故$a_1=a_5 - 4d=1 - 4 × (-\frac{1}{3})=\frac{7}{3}$.
2. [ 2023 全国甲卷] 记 $S$${ n }$ 为等差数列 $\{ a$${ n } \}$ 的前 $n$ 项和. 若 $a$${ 2 } + a$${ 6 } = 1 0 , a$${ 4 } a$${ 8 } = 4 5$,则 $S$${ 5 } = ( \quad )$
A.$2 5$
B.$2 2$
C.$2 0$
D.$1 5$
A.$2 5$
B.$2 2$
C.$2 0$
D.$1 5$
答案:
2.C 解析:设等差数列\{ a_n\}的公差为d,
由$\begin{cases}a_2 + a_6 = 10,\\a_4a_8 = 45.\end{cases}$得$\begin{cases}2a_1 + 6d = 10,\a_1 + 3d)(a_1 + 7d) = 45.\end{cases}$解得$\begin{cases}a_1 = 2,\\d = 1.\end{cases}$
所以$S_5 = 5a_1 + \frac{5 × 4}{2} × d = 5 × 2 + 10 = 20.$
由$\begin{cases}a_2 + a_6 = 10,\\a_4a_8 = 45.\end{cases}$得$\begin{cases}2a_1 + 6d = 10,\a_1 + 3d)(a_1 + 7d) = 45.\end{cases}$解得$\begin{cases}a_1 = 2,\\d = 1.\end{cases}$
所以$S_5 = 5a_1 + \frac{5 × 4}{2} × d = 5 × 2 + 10 = 20.$
3. [ 新课标 Ⅰ 卷] 记 $S$${ n }$ 为数列 $\{ a$${ n } \}$ 的前 $n$ 项和,设甲:$\{ a$${ n } \}$ 为等差数列;乙:$\{ \frac { S$${ n } } { n } \}$ 为等差数列,则(
A.甲是乙的充分不必要条件
B.甲是乙的必要不充分条件
C.甲是乙的充要条件
D.甲既不是乙的充分条件也不是乙的必要条件
C
)A.甲是乙的充分不必要条件
B.甲是乙的必要不充分条件
C.甲是乙的充要条件
D.甲既不是乙的充分条件也不是乙的必要条件
答案:
3.C 解析:充分性:设等差数列$\{ a_n\}$的首项为$a_1$,公差为$d$,则$S_n = na_1 + \frac{n(n - 1)}{2}d$,从而可得$\frac{S_n}{n} = a_1 + \frac{n - 1}{2}d = \frac{d}{2}n + a_1 - \frac{d}{2}$,故$\frac{S_{n + 1}}{n + 1} - \frac{S_n}{n} = d$,即$\{\frac{S_n}{n}\}$为等差数列,所以甲是乙的充分条件.
必要性:$\{\frac{S_n}{n}\}$为等差数列,即$\frac{S_{n + 1}}{n + 1} - \frac{S_n}{n} = \frac{nS_{n + 1} - (n + 1)S_n}{n(n + 1)} = t$($t$为常数),设为$t$,即$\frac{na_{n + 1} - S_n}{n(n + 1)} = t$,
故$S_n = na_{n + 1} - t · n(n + 1)$,$n \geq 2$.
两式相减,得$a_n = na_{n + 1} - (n - 1)a_n - 2tn$,即$a_{n + 1} - a_n = 2t$,
当$n = 1$时,上式也成立,
故$\{ a_n\}$为等差数列,所以甲是乙的必要条件.
综上,甲是乙的充要条件.
必要性:$\{\frac{S_n}{n}\}$为等差数列,即$\frac{S_{n + 1}}{n + 1} - \frac{S_n}{n} = \frac{nS_{n + 1} - (n + 1)S_n}{n(n + 1)} = t$($t$为常数),设为$t$,即$\frac{na_{n + 1} - S_n}{n(n + 1)} = t$,
故$S_n = na_{n + 1} - t · n(n + 1)$,$n \geq 2$.
两式相减,得$a_n = na_{n + 1} - (n - 1)a_n - 2tn$,即$a_{n + 1} - a_n = 2t$,
当$n = 1$时,上式也成立,
故$\{ a_n\}$为等差数列,所以甲是乙的必要条件.
综上,甲是乙的充要条件.
4. [ 2023 全国乙卷] 已知等差数列 $\{ a$${ n } \}$ 的公差为 $\frac { 2 \pi } { 3 }$,集合 $S = \{ \cos a$${ n } | n \in \mathbf { N } ^ { * } \}$,若 $S = \{ a , b \}$,则 $a b = ( \quad )$
A.$- 1$
B.$- \frac { 1 } { 2 }$
C.$0$
D.$\frac { 1 } { 2 }$
A.$- 1$
B.$- \frac { 1 } { 2 }$
C.$0$
D.$\frac { 1 } { 2 }$
答案:
4.B 解析:由题意可得$\cos a_n = \cos(\frac{2\pi}{3}n + a_1 - \frac{2\pi}{3})$,数列$\{ \cos a_n\}$是周期为$3$的数列.
因为集合$S = \{ a,b\}$中只有两个元素,
所以$\cos a_1$,$\cos a_2$,$\cos a_3$中只有$2$个相等,可得$\cos a_1 = \cos a_2$或$\cos a_2 = \cos a_3$,
可令$\cos a_1 = \cos a_2$,可得$\cos a_1 = \cos(\frac{2\pi}{3} + a_1)$,
所以$a_1 + (\frac{2\pi}{3} + a_1) = 2k\pi(k \in \mathbf{Z})$,可得$a_1 = -\frac{\pi}{3} + k\pi(k \in \mathbf{Z})$,则$a_2 = \frac{\pi}{3} + k\pi$,$a_3 = \pi + k\pi(k \in \mathbf{Z})$,则$S = \{\frac{1}{2}, - 1\}$或$S = \{ - \frac{1}{2},1\}$,得$ab = -\frac{1}{2}$.
因为集合$S = \{ a,b\}$中只有两个元素,
所以$\cos a_1$,$\cos a_2$,$\cos a_3$中只有$2$个相等,可得$\cos a_1 = \cos a_2$或$\cos a_2 = \cos a_3$,
可令$\cos a_1 = \cos a_2$,可得$\cos a_1 = \cos(\frac{2\pi}{3} + a_1)$,
所以$a_1 + (\frac{2\pi}{3} + a_1) = 2k\pi(k \in \mathbf{Z})$,可得$a_1 = -\frac{\pi}{3} + k\pi(k \in \mathbf{Z})$,则$a_2 = \frac{\pi}{3} + k\pi$,$a_3 = \pi + k\pi(k \in \mathbf{Z})$,则$S = \{\frac{1}{2}, - 1\}$或$S = \{ - \frac{1}{2},1\}$,得$ab = -\frac{1}{2}$.
5. [ 新课标 Ⅱ 卷] 记 $S$${ n }$ 为等差数列 $\{ a$${ n } \}$ 的前 $n$ 项和,若 $a$${ 3 } + a$${ 4 } = 7 , 3 a$${ 2 } + a$${ 5 } = 5$,则 $S$${ 1 0 } =$
95
.
答案:
5.95 解析:$a_3 + a_4 = 7$,$3a_2 + a_3 = 2a_2 + a_3 + a_4 = 5$,所以$2a_2 = - 2$,即$a_2 = - 1$.又$a_3 + a_4 = 2a_2 + 3d = 7$,所以$d = 3$,所以$a_1 = a_2 - d = - 4$.故$S_{10} = 10a_1 + \frac{10 × 9}{2} · d = 10 × (-4) + 45 × 3 = 95$.
6. [ 新课标 Ⅰ 卷] 将数列 $\{ 2 n - 1 \}$ 与 $\{ 3 n - 2 \}$ 的公共项从小到大排列得到数列 $\{ a$${ n } \}$,则 $\{ a$${ n } \}$ 的前 $n$ 项和为
$3n^2 - 2n$
.
答案:
6.$3n^2 - 2n$ 解析:(方法$1$:观察归纳法)数列$\{ 2n - 1\}$的各项为$1,3,5,7,9,11,13,·s$;
数列$\{ 3n - 2\}$的各项为$1,4,7,10,13,·s$
观察归纳可知,两个数列的公共项为$1,7,13,·s$,构成首项为$1$,公差为$6$的等差数列,则$a_n = 1 + 6(n - 1) = 6n - 5$.
故前$n$项和为$S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(1 + 6n - 5)}{2} = 3n^2 - 2n$.
(方法$2$:引入参变量法)令$b_n = 2n - 1$,$c_m = 3m - 2$,$b_n = c_m$,则$2n - 1 = 3m - 2$,即$3m = 2n + 1$,$m$必为奇数.
令$m = 2t - 1$,则$n = 3t - 2(t = 1,2,3,·s)$.
$a_t = b_{3t - 2} = c_{2t - 1} = 6t - 5$,即$a_n = 6n - 5$.
以下同方法$1$.
数列$\{ 3n - 2\}$的各项为$1,4,7,10,13,·s$
观察归纳可知,两个数列的公共项为$1,7,13,·s$,构成首项为$1$,公差为$6$的等差数列,则$a_n = 1 + 6(n - 1) = 6n - 5$.
故前$n$项和为$S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(1 + 6n - 5)}{2} = 3n^2 - 2n$.
(方法$2$:引入参变量法)令$b_n = 2n - 1$,$c_m = 3m - 2$,$b_n = c_m$,则$2n - 1 = 3m - 2$,即$3m = 2n + 1$,$m$必为奇数.
令$m = 2t - 1$,则$n = 3t - 2(t = 1,2,3,·s)$.
$a_t = b_{3t - 2} = c_{2t - 1} = 6t - 5$,即$a_n = 6n - 5$.
以下同方法$1$.
7. [ 新课标 Ⅰ 卷] 设等差数列 $\{ a$${ n } \}$ 的公差为 $d$,且 $d > 1$,令 $b$${ n } = \frac { n ^ { 2 } + n } { a$${ n } }$,记 $S$${ n } , T$${ n }$ 分别为数列 $\{ a$${ n } \} , \{ b$${ n } \}$ 的前 $n$ 项和.
(1) 若 $3 a$${ 2 } = 3 a$${ 1 } + a$${ 3 } , S$${ 3 } + T$${ 3 } = 2 1$,求 $\{ a$${ n } \}$ 的通项公式;
(2) 若 $\{ b$${ n } \}$ 为等差数列,且 $S$${ 9 9 } - T$${ 9 9 } = 9 9$,求 $d$.
(1) 若 $3 a$${ 2 } = 3 a$${ 1 } + a$${ 3 } , S$${ 3 } + T$${ 3 } = 2 1$,求 $\{ a$${ n } \}$ 的通项公式;
(2) 若 $\{ b$${ n } \}$ 为等差数列,且 $S$${ 9 9 } - T$${ 9 9 } = 9 9$,求 $d$.
答案:
7.解:
(1)$\because 3a_2 = 3a_1 + a_3$,$\therefore 3d = a_1 + 2d$,解得$a_1 = d$,
$\therefore S_3 = 3a_2 = 3(a_1 + d) = 6d$.
又$T_3 = b_1 + b_2 + b_3 = \frac{2}{d} + \frac{6}{2d} + \frac{12}{3d} = \frac{9}{d}$,
$\therefore S_3 + T_3 = 6d + \frac{9}{d} = 21$,即$2d^2 - 7d + 3 = 0$,
解得$d = 3$或$d = \frac{1}{2}$(舍去),$\therefore a_n = a_1 + (n - 1)d = 3n$.
(2)$\because \{ b_n\}$为等差数列,$\therefore 2b_2 = b_1 + b_3$,
即$\frac{12}{a_2} = \frac{12}{a_1} + \frac{12}{a_3}$,$\therefore \frac{6d}{a_2a_3} = \frac{1}{a_2} - \frac{1}{a_3}$,
$\therefore 6d = a_2 + \frac{a_2 · a_3}{a_3}$,
$\because d > 1$,$\therefore a_3 > 0$.
又$S_{99} - T_{99} = 99$,由等差数列的性质知,$99a_{50} - 99b_{50} = 99$,
即$a_{50} - b_{50} = 1$,$\therefore a_{50}^2 - a_{50} - 2550 = 0$,
解得$a_{50} = 51$或$a_{50} = - 50$(舍去).
当$a_1 = 2d$时,$a_{50} = a_1 + 49d = 51d = 51$,解得$d = 1$,与$d > 1$矛盾,舍去;
当$a_1 = d$时,$a_{50} = a_1 + 49d = 50d = 51$,解得$d = \frac{51}{50}$.
综上,$d = \frac{51}{50}$.
(1)$\because 3a_2 = 3a_1 + a_3$,$\therefore 3d = a_1 + 2d$,解得$a_1 = d$,
$\therefore S_3 = 3a_2 = 3(a_1 + d) = 6d$.
又$T_3 = b_1 + b_2 + b_3 = \frac{2}{d} + \frac{6}{2d} + \frac{12}{3d} = \frac{9}{d}$,
$\therefore S_3 + T_3 = 6d + \frac{9}{d} = 21$,即$2d^2 - 7d + 3 = 0$,
解得$d = 3$或$d = \frac{1}{2}$(舍去),$\therefore a_n = a_1 + (n - 1)d = 3n$.
(2)$\because \{ b_n\}$为等差数列,$\therefore 2b_2 = b_1 + b_3$,
即$\frac{12}{a_2} = \frac{12}{a_1} + \frac{12}{a_3}$,$\therefore \frac{6d}{a_2a_3} = \frac{1}{a_2} - \frac{1}{a_3}$,
$\therefore 6d = a_2 + \frac{a_2 · a_3}{a_3}$,
$\because d > 1$,$\therefore a_3 > 0$.
又$S_{99} - T_{99} = 99$,由等差数列的性质知,$99a_{50} - 99b_{50} = 99$,
即$a_{50} - b_{50} = 1$,$\therefore a_{50}^2 - a_{50} - 2550 = 0$,
解得$a_{50} = 51$或$a_{50} = - 50$(舍去).
当$a_1 = 2d$时,$a_{50} = a_1 + 49d = 51d = 51$,解得$d = 1$,与$d > 1$矛盾,舍去;
当$a_1 = d$时,$a_{50} = a_1 + 49d = 50d = 51$,解得$d = \frac{51}{50}$.
综上,$d = \frac{51}{50}$.
8. [ 2022 新课标 1 卷] 记 $S$${ n }$ 为数列 $\{ a$${ n } \}$ 的前 $n$ 项和,已知 $a$${ 1 } = 1 , \{ \frac { S$${ n } } { a$${ n } } \}$ 是公差为 $\frac { 1 } { 3 }$ 的等差数列.
(1) 求 $\{ a$${ n } \}$ 的通项公式;
(2) 证明:$\frac { 1 } { a$${ 1 } } + \frac { 1 } { a$${ 2 } } + ·s + \frac { 1 } { a$${ n } } < 2$.
(1) 求 $\{ a$${ n } \}$ 的通项公式;
(2) 证明:$\frac { 1 } { a$${ 1 } } + \frac { 1 } { a$${ 2 } } + ·s + \frac { 1 } { a$${ n } } < 2$.
答案:
8.
(1)解:因为$a_1 = 1$,所以$\frac{S_{a_1}}{a_1} = 1$.
又因为$\{\frac{S_n}{a_n}\}$是公差为$\frac{1}{3}$的等差数列,
所以$\frac{S_n}{a_n} = \frac{S_1}{a_1} + \frac{1}{3}(n - 1)$,即$S_n = (\frac{n}{3} + \frac{2}{3})a_n = \frac{1}{3}(n + 2)a_n$,
所以当$n \geq 2$时,$S_{n - 1} = \frac{1}{3}(n + 1)a_{n - 1}$,
所以$a_n = S_n - S_{n - 1} = \frac{1}{3}(n + 2)a_n - \frac{1}{3}(n + 1)a_{n - 1},n \geq 2$,
即$(n - 1)a_n = (n + 1)a_{n - 1},n \geq 2$,所以$\frac{a_n}{a_{n - 1}} = \frac{n + 1}{n - 1},n \geq 2$,
所以当$n \geq 2$时,$\frac{a_n}{a_{n - 1}} · \frac{a_{n - 1}}{a_{n - 2}} ·s ·s \frac{a_2}{a_1} = \frac{n + 1}{n - 1} · \frac{n}{n - 2} · \frac{n - 1}{n - 3} ·s ·s \frac{4}{2} · \frac{3}{1} = \frac{n(n + 1)}{2}$,所以$a_n = \frac{n(n + 1)}{2}$
当$n = 1$时,$a_1 = 1$满足上式,所以$a_n = \frac{n(n + 1)}{2}$
(2)证明:由
(1)知$a_n = \frac{n(n + 1)}{2}$,
所以$\frac{1}{a_n} = \frac{2}{n(n + 1)} = 2(\frac{1}{n} - \frac{1}{n + 1})$,所以$\frac{1}{a_1} + \frac{1}{a_2} + ·s + \frac{1}{a_n} = 2(1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + ·s + \frac{1}{n} - \frac{1}{n + 1}) = 2(1 - \frac{1}{n + 1})$
因为$n \in \mathbf{N}^*$,所以$0 < \frac{1}{n + 1} \leq \frac{1}{2}$,所以$1 - \frac{1}{n + 1} \leq \frac{1}{2} < 1$,
所以$2(1 - \frac{1}{n + 1}) < 2$,所以$\frac{1}{a_1} + \frac{1}{a_2} + ·s + \frac{1}{a_n} < 2$.
(1)解:因为$a_1 = 1$,所以$\frac{S_{a_1}}{a_1} = 1$.
又因为$\{\frac{S_n}{a_n}\}$是公差为$\frac{1}{3}$的等差数列,
所以$\frac{S_n}{a_n} = \frac{S_1}{a_1} + \frac{1}{3}(n - 1)$,即$S_n = (\frac{n}{3} + \frac{2}{3})a_n = \frac{1}{3}(n + 2)a_n$,
所以当$n \geq 2$时,$S_{n - 1} = \frac{1}{3}(n + 1)a_{n - 1}$,
所以$a_n = S_n - S_{n - 1} = \frac{1}{3}(n + 2)a_n - \frac{1}{3}(n + 1)a_{n - 1},n \geq 2$,
即$(n - 1)a_n = (n + 1)a_{n - 1},n \geq 2$,所以$\frac{a_n}{a_{n - 1}} = \frac{n + 1}{n - 1},n \geq 2$,
所以当$n \geq 2$时,$\frac{a_n}{a_{n - 1}} · \frac{a_{n - 1}}{a_{n - 2}} ·s ·s \frac{a_2}{a_1} = \frac{n + 1}{n - 1} · \frac{n}{n - 2} · \frac{n - 1}{n - 3} ·s ·s \frac{4}{2} · \frac{3}{1} = \frac{n(n + 1)}{2}$,所以$a_n = \frac{n(n + 1)}{2}$
当$n = 1$时,$a_1 = 1$满足上式,所以$a_n = \frac{n(n + 1)}{2}$
(2)证明:由
(1)知$a_n = \frac{n(n + 1)}{2}$,
所以$\frac{1}{a_n} = \frac{2}{n(n + 1)} = 2(\frac{1}{n} - \frac{1}{n + 1})$,所以$\frac{1}{a_1} + \frac{1}{a_2} + ·s + \frac{1}{a_n} = 2(1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + ·s + \frac{1}{n} - \frac{1}{n + 1}) = 2(1 - \frac{1}{n + 1})$
因为$n \in \mathbf{N}^*$,所以$0 < \frac{1}{n + 1} \leq \frac{1}{2}$,所以$1 - \frac{1}{n + 1} \leq \frac{1}{2} < 1$,
所以$2(1 - \frac{1}{n + 1}) < 2$,所以$\frac{1}{a_1} + \frac{1}{a_2} + ·s + \frac{1}{a_n} < 2$.
9. [ 2023 全国甲卷] 已知正项等比数列 $\{ a$${ n } \}$ 中,$a$${ 1 } = 1 , S$${ n }$ 为 $\{ a$${ n } \}$ 的前 $n$ 项和,$S$${ 5 } = 5 S$${ 3 } - 4$,则 $S$${ 4 } = ( \quad )$
A.$7$
B.$9$
C.$1 5$
D.$3 0$
A.$7$
B.$9$
C.$1 5$
D.$3 0$
答案:
9.C 解析:根据题意列出关于$q$的方程,计算出$q$,即可求出$S_4$.由题意,知$1 + q + q^2 + q^3 = 5(1 + q + q^2) - 4$,
即$q^4 + q^3 - 4q^2 - 4q = 0$,即$q(q + 1)(q - 2)(q + 2) = 0$.
又$q > 0$,所以$q = 2$.所以$S_4 = 1 + 2 + 4 + 8 = 15$.
即$q^4 + q^3 - 4q^2 - 4q = 0$,即$q(q + 1)(q - 2)(q + 2) = 0$.
又$q > 0$,所以$q = 2$.所以$S_4 = 1 + 2 + 4 + 8 = 15$.
10. [ 天津卷] 已知 $\{ a$${ n } \}$ 为等比数列,$S$${ n }$ 为数列 $\{ a$${ n } \}$ 的前 $n$ 项和,$a$${ n + 1 } = 2 S$${ n } + 2$,则 $a$${ 4 }$ 的值为 (
A.$3$
B.$1 8$
C.$5 4$
D.$1 5 2$
C
)A.$3$
B.$1 8$
C.$5 4$
D.$1 5 2$
答案:
10.C 解析:因为$a_{n + 1} = 2S_n + 2$,
所以当$n \geq 2$时,$a_n = 2S_{n - 1} + 2$,
两式相减得$a_{n + 1} - a_n = 2a_n$,即$a_{n + 1} = 3a_n$,
所以数列$\{ a_n\}$是公比$q = \frac{a_{n + 1}}{a_n} = 3$的等比数列.
当$n = 1$时,$a_2 = 2S_1 + 2 = 2a_1 + 2$,
又$a_2 = 3a_1$,所以$3a_1 = 2a_1 + 2$,
解得$a_1 = 2$,
所以$a_4 = a_1q^3 = 2 × 3^3 = 54$.
所以当$n \geq 2$时,$a_n = 2S_{n - 1} + 2$,
两式相减得$a_{n + 1} - a_n = 2a_n$,即$a_{n + 1} = 3a_n$,
所以数列$\{ a_n\}$是公比$q = \frac{a_{n + 1}}{a_n} = 3$的等比数列.
当$n = 1$时,$a_2 = 2S_1 + 2 = 2a_1 + 2$,
又$a_2 = 3a_1$,所以$3a_1 = 2a_1 + 2$,
解得$a_1 = 2$,
所以$a_4 = a_1q^3 = 2 × 3^3 = 54$.
11. [ 2022 全国乙卷] 已知等比数列 $\{ a$${ n } \}$ 的前 $3$ 项和为 $1 6 8 , a$${ 2 } - a$${ 5 } = 4 2$,则 $a$${ 6 } = ( \quad )$
A.$1 4$
B.$1 2$
C.$6$
D.$3$
A.$1 4$
B.$1 2$
C.$6$
D.$3$
答案:
11.D 解析:设等比数列$\{ a_n\}$的公比为$q$,
由题意,得$\begin{cases}a_1 + a_2 + a_3 = 168,\\a_2 - a_5 = 42.\end{cases}$即$\begin{cases}a_1(1 + q + q^2) = 168,\\a_1q(1 - q^3) = 42.\end{cases}$
即$\begin{cases}a_1(1 + q + q^2) = 168,\\a_1q(1 - q)(1 + q + q^2) = 42.\end{cases}$
解得$q = \frac{1}{2}$,$a_1 = 96$,
所以$a_6 = a_1q^5 = 3$.
由题意,得$\begin{cases}a_1 + a_2 + a_3 = 168,\\a_2 - a_5 = 42.\end{cases}$即$\begin{cases}a_1(1 + q + q^2) = 168,\\a_1q(1 - q^3) = 42.\end{cases}$
即$\begin{cases}a_1(1 + q + q^2) = 168,\\a_1q(1 - q)(1 + q + q^2) = 42.\end{cases}$
解得$q = \frac{1}{2}$,$a_1 = 96$,
所以$a_6 = a_1q^5 = 3$.
12. [ 2021 全国甲卷] 记 $S$${ n }$ 为等比数列 $\{ a$${ n } \}$ 的前 $n$ 项和. 若 $S$${ 2 } = 4 , S$${ 4 } = 6$,则 $S$${ 6 } = ( \quad )$
A.$7$
B.$8$
C.$9$
D.$1 0$
A.$7$
B.$8$
C.$9$
D.$1 0$
答案:
12.A 解析:$\because S_n$为等比数列$\{ a_n\}$的前$n$项和,$S_2 = 4$,$S_4 = 6$,
由等比数列的性质,可知$S_2$,$S_4 - S_2$,$S_6 - S_4$成等比数列,
$\therefore 4^2 = 4(S_6 - 6)$,解得$S_6 = 7$.
由等比数列的性质,可知$S_2$,$S_4 - S_2$,$S_6 - S_4$成等比数列,
$\therefore 4^2 = 4(S_6 - 6)$,解得$S_6 = 7$.
13. [ 2023 新课标 Ⅱ 卷] 记 $S$${ n }$ 为等比数列 $\{ a$${ n } \}$ 的前 $n$ 项和,若 $S$${ 4 } = - 5 , S$${ 6 } = 2 1 S$${ 2 }$,则 $S$${ 8 } = ( \quad )$
A.$1 2 0$
B.$8 5$
C.$- 8 5$
D.$- 1 2 0$
A.$1 2 0$
B.$8 5$
C.$- 8 5$
D.$- 1 2 0$
答案:
13.C 解析:设等比数列$\{ a_n\}$的公比为$q$,
由$S_4 = - 5 \neq 0$知$q \neq - 1$,
由$S_6 = 21S_2$知$q \neq 1$,
所以由$S_6 = 21S_2$,得$1 - q^6 = 21(1 - q^2)$,
即$(1 - q^2)(1 + q^2 + q^4) = 21(1 - q^2)$.
因为$q \neq \pm 1$,所以$1 + q^2 + q^4 = 21$,
即$q^4 + q^2 - 20 = 0$,解得$q^2 = 4$.
由$\frac{S_8}{S_4} = 1 + q^4 = 17$,$S_4 = - 5$,得$S_8 = - 85$.
由$S_4 = - 5 \neq 0$知$q \neq - 1$,
由$S_6 = 21S_2$知$q \neq 1$,
所以由$S_6 = 21S_2$,得$1 - q^6 = 21(1 - q^2)$,
即$(1 - q^2)(1 + q^2 + q^4) = 21(1 - q^2)$.
因为$q \neq \pm 1$,所以$1 + q^2 + q^4 = 21$,
即$q^4 + q^2 - 20 = 0$,解得$q^2 = 4$.
由$\frac{S_8}{S_4} = 1 + q^4 = 17$,$S_4 = - 5$,得$S_8 = - 85$.
14. [ 北京卷] “十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献. 十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于 $\sqrt [ 1 2 ] { 2 }$. 若第一个单音的频率为 $f$,则第八个单音的频率为(
A.$\sqrt [ 3 ] { 2 } f$
B.$\sqrt [ 3 ] { 2 ^ { 2 } } f$
C.$\sqrt [ 3 ] { 2 ^ { 5 } } f$
D.$\sqrt [ 1 2 ] { 2 ^ { 7 } } f$
D
)A.$\sqrt [ 3 ] { 2 } f$
B.$\sqrt [ 3 ] { 2 ^ { 2 } } f$
C.$\sqrt [ 3 ] { 2 ^ { 5 } } f$
D.$\sqrt [ 1 2 ] { 2 ^ { 7 } } f$
答案:
14.D 解析:从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于$\sqrt[12]{2}$.若第一个单音的频率为$f$,则第八个单音的频率为$(\sqrt[12]{2})^7f = \sqrt[12]{2^7}f$.
查看更多完整答案,请扫码查看