2025年小题狂做高中数学选择性必修第二册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年小题狂做高中数学选择性必修第二册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



1. 已知数列$\{ a_{n}\}$的前$n$项和为$S_{n}$,$a_{n}=(-1)^{n}(3n - 1)$,则$S_{20}+S_{21}=$( )

A.122
B.120
C.2
D.$-2$
答案: 1. D 因为$a_n = (-1)^n(3n - 1)$,所以$S_{20} = (-2) + 5 + (-8) + 11 + ·s + (-56) + 59 = (-2 + 5) + (-8 + 11) + ·s + (-56 + 59) = 3 × 10 = 30$,则$S_{21} = S_{20} + a_{21} = 30 - 62 = -32$,所以$S_{20} + S_{21} = -2$。
2. [2025 江西南昌中学期中]已知数列$\{ a_{n}\}$满足$a_{1}=1$,$a_{2}=2$,$a_{n + 2}-a_{n}=1+(-1)^{n}$,设其前$n$项和为$S_{n}$,则$S_{99}=$( )

A.2 400
B.2 500
C.2 600
D.2 700
答案: 2. B 因为$a_{n + 2} - a_n = 1 + (-1)^n$,所以当$n$是奇数时,$a_{n + 2} - a_n = 1 + (-1)^n = 0$,即$a_{n + 2} = a_n$,所以$a_1 = a_3 = a_5 = ·s = a_n = 1$;当$n$是偶数时,$a_{n + 2} - a_n = 1 + (-1)^n = 2$,即$a_{n + 2} = a_n + 2$,所以偶数项构成首项$a_2 = 2$,公差$d = 2$的等差数列. 前$99$项中有$50$个奇数项、$49$个偶数项,所以$S_{99} = S_{奇} + S_{偶} = 50 + 49 × 2 + \frac{49 × 48}{2} × 2 = 2500$。
3. [2025 江苏扬州邗江中学检测]“数学王子”高斯是近代数学奠基者之一,他的数学研究几乎遍及所有领域,在数论、代数学、非欧几何、复变函数和微分几何等方面都作出了开创性的贡献。我们高中阶段也学习过很多高斯的数学理论,比如高斯函数、倒序相加法、最小二乘法等等。已知某数列的通项$a_{n}=\begin{cases}\dfrac{2n - 51}{2n - 52},&n\neq 26,\\1,&n = 26,\end{cases}$则$a_{1}+a_{2}+·s +a_{51}=$( )

A.48
B.49
C.50
D.51
答案: 3. D 因为当$n \neq 26$时,$a_n = \frac{2n - 51}{2n - 52} + \frac{2n - 52 + 1}{2n - 52} = 1 + \frac{1}{2(n - 26)}$,所以$a_n + a_{52 - n} = 1 + \frac{1}{2(n - 26)} + 1 + \frac{1}{2(52 - n - 26)} = 2$. 又$S_{51} = a_1 + a_2 + ·s + a_{51}$,则$2S_{51} = (a_1 + a_{51}) + (a_2 + a_{50}) + ·s + (a_{51} + a_1) = 2 × 51$,解得$S_{51} = 51$,即$a_1 + a_2 + ·s + a_{51} = 51$。
4. 已知数列$\{ a_{n}\}$满足$a_{1}=2$,$a_{n + 1}-2a_{n}=0$,$b_{n}=\dfrac{a_{n}}{(a_{n}-1)(a_{n + 1}-1)}$,数列$\{ b_{n}\}$的前$n$项和为$S_{n}$。若$\lambda > S_{n}$对$n\in \mathbf{N}^{*}$恒成立,则实数$\lambda$的最小值是( )

A.$\dfrac{1}{2}$
B.1
C.$\dfrac{3}{2}$
D.2
答案: 4. B 因为$a_1 = 2$,$\frac{a_{n + 1}}{a_n} = 2$,所以$\{a_n\}$是以$2$为首项,$2$为公比的等比数列,所以$a_n = 2 · 2^{n - 1} = 2^n$,所以$b_n = \frac{2^n}{(2^n - 1)(2^{n + 1} - 1)} = \frac{1}{2^n - 1} - \frac{1}{2^{n + 1} - 1}$,所以$S_n = (\frac{1}{2^1 - 1} - \frac{1}{2^2 - 1}) + (\frac{1}{2^2 - 1} - \frac{1}{2^3 - 1}) + ·s + (\frac{1}{2^n - 1} - \frac{1}{2^{n + 1} - 1}) = 1 - \frac{1}{2^{n + 1} - 1} \in [\frac{2}{3},1)$. 因为$\lambda > S_n$对$n \in N^*$恒成立,所以$\lambda \geq 1$,所以$\lambda$的最小值是$1$。
5. [多选题]已知数列$\{ a_{n}\}$满足$a_{1}+3a_{2}+·s +3^{n - 1}a_{n}=n· 3^{n + 1}$,则下列说法正确的有( )

A.数列$\{ a_{n}\}$的前 9 项和为 295
B.数列$\{ 2^{a_{n}}\}$为等比数列
C.数列$\{ |a_{n}-18|\}$的前 12 项和为 288
D.数列$\{ (-1)^{n}a_{n}\}$的前$2n$项和为$6n$
答案: 5. BD 对于$A$,$a_1 + 3a_2 + ·s + 3^{n - 1}a_n = n · 3^{n + 1}$ ①,令$n = 1$,得$a_1 = 3^2 = 9$,当$n \geq 2$时,$a_1 + 3a_2 + ·s + 3^{n - 2}a_{n - 1} = (n - 1) · 3^n$ ②,由① - ②,得$3^{n - 1}a_n = n · 3^{n + 1} - (n - 1) · 3^n$,化简得$a_n = 6n + 3$,又$a_1 = 6 + 3 = 9$满足上式,所以$a_n = 6n + 3$,故$a_{n + 1} - a_n = 6(n + 1) + 3 - 6n - 3 = 6$,所以$\{a_n\}$是公差为$6$的等差数列,数列$\{a_n\}$的前$9$项和为$9 × 9 + \frac{9 × 8}{2} × 6 = 297$,故A错误;对于B,$2^{6n + 3} ÷ 2^{6n} = 2^3 = 8$,$2^{6n + 9} ÷ 2^{6n + 3} = 2^6$,故数列$\{2^{2^n}\}$为等比数列,故B正确;对于C,$a_n - 18 = 6n - 15$,当$1 \leq n \leq 2$时,$a_n - 18 = 6n - 15 < 0$,当$n \geq 3$时,$a_n - 18 = 6n - 15 > 0$,其中$a_3 - 18 = 18 - 15 = 3$,$a_{12} - 18 = 72 - 15 = 57$,则$\{|a_n - 18|\}$的前$12$项和为$-(-9 - 3) + \frac{10 × (3 + 57)}{2} = 312$,故C错误;对于D,$(-1)^n a_n = (-1)^n(6n + 3)$,设数列$\{(-1)^n a_n\}$的前$2n$项和为$T_{2n}$,则$T_{2n} = -9 + 15 - 21 + 27 - ·s - (12n - 3) + (12n + 3) = (-9 + 15) + (-21 + 27) + ·s + [-(12n - 3) + (12n + 3)] = 6n$,故D正确.
6. [2025 江西六校第一次联考]已知等差数列$\{ a_{n}\}$为递增数列,且满足$a_{4}a_{5}=63$,$S_{8}=64$。若$c_{n}=(-1)^{n - 1}\dfrac{4n}{a_{n}a_{n + 1}}$,则数列$\{ c_{n}\}$的前 11 项和为____。
答案: 6. $\frac{24}{23}$ 等差数列$\{a_n\}$为递增数列,且满足$S_8 = \frac{8(a_1 + a_8)}{2} = 64$,则$a_1 + a_8 = a_4 + a_5 = 16$,即$\begin{cases}a_4a_5 = 63, \\a_4 + a_5 = 16,\end{cases}$解得$\begin{cases}a_4 = 7, \\a_5 = 9,\end{cases}$所以$d = 2$,所以$a_n = a_4 + (n - 4)d = 2n - 1$,故$c_n = (-1)^{n - 1} \frac{4n}{a_n a_{n + 1}} = (-1)^{n - 1} \frac{4n}{(2n - 1)(2n + 1)}$。设数列$\{c_n\}$的前$n$项和为$H_n$,则$H_n = c_1 + c_2 + c_3 + ·s + c_n$,当$n$为奇数时,$H_n = (-1)^0(1 + \frac{1}{3}) + (-1)^1(\frac{1}{3} + \frac{1}{5}) + ·s + (-1)^{n - 1}(\frac{1}{2n - 1} + \frac{1}{2n + 1}) = 1 + \frac{1}{2n + 1}$,则$H_{11} = \frac{24}{23}$。
7. [2025 河南质量检测]记$[x]$为不超过$x$的最大整数,已知各项均为正数的数列$\{ a_{n}\}$满足$a_{n}^{2}-a_{n + 1}^{2}=a_{n}^{2}a_{n + 1}^{2}$,且$a_{1}=1$,$S_{n}$为$\{ a_{n}\}$的前$n$项和,则$[S_{100}]=$____。
答案: 7. 18 由$a_n^2 - a_{n + 1}^2 = a_n^2 a_{n + 1}^2$,得$\frac{1}{a_{n + 1}^2} - \frac{1}{a_n^2} = 1$,且$\frac{1}{a_1^2} = 1$,所以$\{\frac{1}{a_n^2}\}$是以$1$为首项,$1$为公差的等差数列,所以$\frac{1}{a_n^2} = n$,故$a_n = \frac{1}{\sqrt{n}}$。因为$\frac{1}{\sqrt{n}} = \frac{2}{2\sqrt{n}} < \frac{2}{\sqrt{n - 1} + \sqrt{n}} = 2(\sqrt{n + 1} - \sqrt{n})$,$2(\sqrt{n + 1} - \sqrt{n}) < a_n < 2(\sqrt{n} - \sqrt{n - 1})$,所以$S_{100} = a_1 + a_2 + a_3 + ·s + a_{100} > 1 + 2 × (\sqrt{3} - \sqrt{2} + \sqrt{4} - \sqrt{3} + ·s + \sqrt{101} - \sqrt{100}) = 1 + 2 × (\sqrt{101} - \sqrt{2}) > 21 - 2\sqrt{2} > 18$,$S_{100} < 1 + 2 × (\sqrt{2} - \sqrt{1} + \sqrt{3} - \sqrt{2} + ·s + \sqrt{100} - \sqrt{99}) = 1 + 2 × (10 - 1) = 19$。所以$18 < S_{100} < 19$,故$[S_{100}] = 18$。

查看更多完整答案,请扫码查看

关闭