2025年小题狂做高中数学选择性必修第二册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年小题狂做高中数学选择性必修第二册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



1. (教材变式)已知等比数列$\{ a_{n}\}$的前n项和为$S_{n}$,满足$a_{1}=1$,公比$q=2$.若$S_{n}=31$,则$n=$ ( )

A.4
B.5
C.6
D.7
答案: 1. B 由$31 = \frac{1 - 2^{n}}{1 - 2}$得$2^{n} = 32$,解得$n = 5$.
教材链接 人教A版选择性必修二4.3.2例7
2. 设数列$\{ (-1)^{n}\}$的前n项和为$S_{n}$,则$S_{n}=$ ( )

A.$\frac {n[(-1)^{n}-1]}{2}$
B.$\frac {(-1)^{n+1}+1}{2}$
C.$\frac {(-1)^{n}+1}{2}$
D.$\frac {(-1)^{n}-1}{2}$
答案: 2. D $S_{n} = \frac{(-1)[1 - (-1)^{n}]}{1 - (-1)} = \frac{(-1)^{n} - 1}{2}$
3. (易错易混)在等比数列$\{ a_{n}\}$中,$a_{3}=\frac {3}{2},S_{3}=\frac {9}{2}$,则$a_{1}=$ ( )

A.$\frac {3}{2}$或6
B.3
C.$\frac {3}{2}$或3
D.6
答案: 3. A 设等比数列$\{ a_{n}\}$的公比为$q$,由题意可得$a_{3} = a_{1}q^{2} = \frac{3}{2}$,
解得$\begin{cases} a_{1} = 6, \\q = \frac{1}{2} \end{cases}$或$\begin{cases} a_{1} = \frac{3}{2}, \\q = - 1 \end{cases}$或$\begin{cases} a_{1} = 6, \\q = 1 \end{cases}$或$\begin{cases} a_{1} = \frac{3}{2}, \\q = - \frac{1}{2} \end{cases}$.
$S_{3} = a_{1}(1 + q + q^{2}) = \frac{9}{2}$,
易错警示 等比数列求和的技巧
涉及等比数列的前$n$项和,若项数较小,则可直接相加,不需要用等比数列的前$n$项和公式;若用前$n$项和公式,则必须讨论公比$q = 1$和$q \neq 1$.
4. 设等比数列$\{ a_{n}\}$的前n项和为$S_{n}$.若$\frac {S_{6}}{S_{3}}=3$,则$\frac {S_{9}}{S_{6}}=$ ( )

A.2
B.$\frac {7}{3}$
C.$\frac {8}{3}$
D.3
答案: 4. B 设公比为$q$,因为$S_{6} = 3S_{3} \neq 2S_{3}$,所以$q \neq 1$,则$\frac{S_{6}}{S_{3}} = \frac{1 - q^{6}}{1 - q^{3}} = 1 + q^{3} = 3$,得$q^{3} = 2$,于是$\frac{S_{9}}{S_{6}} = \frac{1 - q^{9}}{1 - q^{6}} = \frac{1 - 2^{3}}{1 - 2^{2}} = \frac{7}{3}$.
5. 已知一个等比数列的首项为1,项数是偶数,其奇数项之和为85,偶数项之和为170,则这个数列的项数为 ( )

A.2
B.4
C.8
D.16
答案: 5. C 设这个等比数列$\{ a_{n}\}$共有$2k(k \in \mathbf{N}^{*})$项,公比为$q$,则奇数项之和为$S_{奇} = a_{1} + a_{3} + ·s + a_{2k - 1} = 85$,偶数项之和为$S_{偶} = a_{2} + a_{4} + ·s + a_{2k} = q(a_{1} + a_{3} + ·s + a_{2k - 1}) = qS_{奇} = 170$,所以$q = \frac{S_{偶}}{S_{奇}} = \frac{170}{85} = 2$,则等比数列$\{ a_{n}\}$的所有项之和为$S_{2k} = \frac{a_{1}(1 - 2^{2k})}{1 - 2} = 2^{2k} - 1 = 170 + 85 = 255$,所以$2^{2k} = 256$,解得$k = 4$,因此,项数为8.
6. 在等比数列$\{ a_{n}\}$中,已知$a_{1}+a_{2}+... +a_{10}=48,a_{1}a_{2}· ... · a_{10}=32$,则$\frac {1}{a_{1}}+\frac {1}{a_{2}}+... +\frac {1}{a_{10}}=$ ( )

A.12
B.16
C.24
D.36
答案: 6. C 设等比数列$\{ a_{n}\}$的公比为$q$,则$\{\frac{1}{a_{n}}\}$也是等比数列,公比为$\frac{1}{q}$.因为$a_{1} · a_{2} · ·s · a_{10} = 32$,即$a_{1}^{10}q^{45} = (a_{1}^{2}q^{9})^{5} = 32$,所以$a_{1}^{2}q^{9} = 2$.又因为$a_{1} + a_{2} + ·s + a_{10} = 48$,可设$\frac{1}{a_{1}} + \frac{1}{a_{2}} + ·s + \frac{1}{a_{10}} = x$,则$\frac{1}{a_{1}}\left[1 - \left(\frac{1}{q}\right)^{10}\right]\frac{1}{1 - \frac{1}{q}} = x$,
整理得$\begin{cases} a_{1}(1 - q^{10}) = 48, \\ \frac{1 - q^{10}}{a_{1}q^{9}(q - 1)} = x, \end{cases}$两式相除得$a_{1}^{2}q^{9} = \frac{48}{x}$,则$x = \frac{48}{a_{1}^{2}q^{9}} = \frac{48}{2} = 24$,即$\frac{1}{a_{1}} + \frac{1}{a_{2}} + ·s + \frac{1}{a_{10}} = 24$.
7. 等比数列$\{ a_{n}\}$的公比为$q(q<0)$,且$a_{4},a_{3},a_{5}$成等差数列,则下列说法正确的是 ( )

A.$q=-2$
B.若$a_{1}=1$,则$a_{2}a_{8}=256$
C.若$S_{2}=-1$,则$S_{4}=-4$
D.$\frac {S_{9}-S_{6}}{S_{6}-S_{3}}=-2$
答案: 7. AB 对于A,因为$a_{4},a_{3},a_{5}$成等差数列,所以$2a_{3} = a_{4} + a_{5}$,即$2a_{3} = a_{3}q + a_{3}q^{2}$.又因为$a_{3} \neq 0$,所以$2 = q + q^{2}$,解得$q = 1$或$q = - 2$,而$q < 0$,所以$q = - 2$,故A正确.对于B,因为$a_{1} = 1$,所以$a_{2}a_{8} = a_{5}^{2} = (a_{1}q^{4})^{2} = 2^{8} = 256$,故B正确.
对于C,因为$S_{2} = - 1$,所以$S_{2} = a_{1} + a_{2} = - 1$,所以$S_{4} = a_{1} + a_{2} + a_{3} + a_{4} = (1 + q^{2})S_{2} = - 5$,故C错误.对于D,
$\frac{S_{9} - S_{6}}{S_{6} - S_{3}} = \frac{a_{7} + a_{8} + a_{9}}{a_{4} + a_{5} + a_{6}} = q^{3} = - 8$,故D错误.
8. 已知等比数列$\{ a_{n}\}$的公比为q,前n项和为$S_{n}$,则下列结论正确的是 ( )

A.$S_{n+1}=S_{n}+a_{n}· q$
B.$S_{n+1}=S_{1}+qS_{n}$
C.$\frac {1}{a_{1}}+\frac {1}{a_{2}}+... +\frac {1}{a_{n}}=\frac {1}{a_{n}}· \frac {1-q^{n}}{1-q}$
D.“$q=-\frac {1}{2}$”是“$S_{n},S_{n+2},S_{n+1}$成等差数列”的充要条件
答案: 8. ABD 对于A,$S_{n + 1} - S_{n} = a_{n + 1} = a_{1}q^{n} = a_{n} · q$,故A正确.对于B,$S_{n + 1} - S = a_{2} + a_{3} + ·s + a_{n + 1} = q(a_{1} + a_{2} + ·s + a_{n}) = qS_{n}$,故B正确.对于C,$\frac{1}{a_{n}} · \frac{1}{a_{n - 1}} · ·s · \frac{1}{a_{2}} · \frac{1}{a_{1}}$可看作是以$\frac{1}{a_{n}}$为首项,$q$为公比的等比数列,当$q \neq 1$时,$\frac{1}{a_{1}} + \frac{1}{a_{2}} + ·s + \frac{1}{a_{n}} = \frac{1}{a_{n}} · \frac{1 - q^{n}}{1 - q}$,当$q = 1$时,则上式不成立,故C错误.对于D,当$q = - \frac{1}{2}$时,$S_{n + 1} + S_{n} = 2S_{n + 2} - 2a_{n + 2} - a_{n + 1} = 2S_{n + 2} - (2q · a_{n + 1} + a_{n + 1}) = 2S_{n + 2} - (- a_{n + 1} + a_{n + 1}) = 2S_{n + 2}$.当$S_{n},S_{n + 2},S_{n + 1}$成等差数列时,$S_{n} + S_{n + 1} = 2S_{n + 2}$,即$S_{n} + S_{n + 1} = 2S_{n + 2} = 2S_{n + 1} + 2a_{n + 2} + a_{n + 1}$,即$2a_{n + 2} + a_{n + 1} = 0$,所以$\frac{a_{n + 2}}{a_{n + 1}} = q = - \frac{1}{2}$.综上,“$q = - \frac{1}{2}$”是“$S_{n},S_{n + 2},S_{n + 1}$成等差数列”的充要条件,故D正确.

查看更多完整答案,请扫码查看

关闭