2025年小题狂做高中数学选择性必修第二册人教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年小题狂做高中数学选择性必修第二册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
1. [2025广东佛山联考]在公差大于0的等差数列$\{ a_{n}\}$中,$a_{2}+a_{8}=10$,$a_{3}a_{7}=-11$,则该数列的公差为( )
A.$\frac{\sqrt{14}}{2}$
B.$\frac{\sqrt{7}}{2}$
C.2
D.3
A.$\frac{\sqrt{14}}{2}$
B.$\frac{\sqrt{7}}{2}$
C.2
D.3
答案:
1. D 设等差数列$\{a_n\}$的公差为$d$,则$a_2 + a_8 = 2a_5 = 10$,得$a_5 = 5$,所以$a_3a_7 = (a_5 - 2d)(a_5 + 2d) = a_5^2 - 4d^2 = 25 - 4d^2 = -11$,即$d^2 = 9$.又$d > 0$,则$d = 3$.
2. [2025河南豫北名校期中联考]已知等差数列$\{ a_{n}\}$的公差$d≠0$,前$n$项和为$S_{n}$,若$a_{4}+a_{8}=\frac{S_{9}}{3}$,则$\frac{S_{9}}{a_{9}}=$( )
A.6
B.5
C.4
D.3
A.6
B.5
C.4
D.3
答案:
2. D 因为$a_4 + a_8 = \frac{S_9}{3}$,所以$3(a_4 + a_8) = S_9 = \frac{9(a_1 + a_9)}{2} = 9a_5$,所以$2a_6 = 3a_5$,即$2a_1 + 10d = 3a_1 + 12d$,所以$a_1 = -2d$,所以$\frac{S_9}{a_9} = \frac{9a_5}{a_1 + 8d} = \frac{9(a_1 + 4d)}{a_1 + 8d} = 3$.
3. 已知数列$\{ a_{n}\}$的前$n$项和为$S_{n}$,满足$a_{1}=1$,$a_{2}=3$,$2\sqrt{S_{n}}=\sqrt{S_{n+1}}+\sqrt{S_{n-1}}(n≥2)$,则$a_{22}=$( )
A.43
B.42
C.41
D.40
A.43
B.42
C.41
D.40
答案:
3. A 由$2\sqrt{S_n} = \sqrt{S_{n + 1}} + \sqrt{S_{n - 1}}(n \geq 2)$知$\{\sqrt{S_n}\}$为等差数列.又$\sqrt{S_1} = \sqrt{a_1} = 1$,$\sqrt{S_2} = \sqrt{a_1 + a_2} = 2$,所以公差$d = 1$,所以$\sqrt{S_n} = 1 + 1 × (n - 1) = n$,故$S_n = n^2$.由$S_{n - 1} = (n - 1)^2(n \geq 2)$,可得$a_n = S_n - S_{n - 1} = n^2 - (n - 1)^2 = 2n - 1$.又$a_1 = 1$也满足,所以$a_n = 2n - 1$,则$a_{22} = 43$.
4. [2025山东淄博质量检测]设$S_{n}$为等差数列$\{ a_{n}\}$的前$n$项和,则“$\forall n∈N^{*},a_{n+1}>a_{n}$”是“$nS_{n+1}>(n+1)S_{n}$”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
答案:
4. C 设等差数列$\{a_n\}$的公差为$d$,若$\forall n \in N^*$,$a_{n + 1} > a_n$,则$a_{n + 1} - a_n = d > 0$.所以$nS_{n + 1} - (n + 1)S_n = n(S_{n + 1} + a_{n + 1}) - (n + 1)S_n = n a_{n + 1} - S_n = n(a_1 + nd) - na_1 - \frac{n(n - 1)}{2}d = \frac{n^2 + n}{2}d > 0$,即充分性成立.若$nS_{n + 1} > (n + 1)S_n$,则$\frac{S_{n + 1}}{n + 1} > \frac{S_n}{n}$,即$\{\frac{S_n}{n}\}$为递增数列.又因为$S_n = na_1 + \frac{n(n - 1)}{2}d$,所以$\frac{S_n}{n} = a_1 + \frac{n - 1}{2}d = \frac{d}{2}n + a_1 - \frac{d}{2}$,所以$\frac{d}{2} > 0$,即$d > 0$.所以$a_{n + 1} - a_n = d > 0$,即必要性成立.所以“$\forall n \in N^*$,$a_{n + 1} > a_n$”是“$nS_{n + 1} > (n + 1)S_n$”的充要条件.
5. [多选题,2025辽宁大连段考]已知等差数列$\{ a_{n}\}$的公差为$d$,前$n$项和为$S_{n}$,且$m$,$n∈N^{*},m≠n$,则下列结论正确的是( )
A.$a_{n}-a_{m}=(n-m)d$
B.若$a_{n}=m$,$a_{m}=n$,则$a_{n+m}=0$
C.$\{ \frac{S_{n}}{n}\}$是公差为$2d$的等差数列
D.若$S_{n}=m$,$S_{m}=n$,则$S_{n+m}=-(m+n)$
A.$a_{n}-a_{m}=(n-m)d$
B.若$a_{n}=m$,$a_{m}=n$,则$a_{n+m}=0$
C.$\{ \frac{S_{n}}{n}\}$是公差为$2d$的等差数列
D.若$S_{n}=m$,$S_{m}=n$,则$S_{n+m}=-(m+n)$
答案:
5. ABD 由题意可知$a_n = a_1 + (n - 1)d$,$m, n \in N^*$,$m \neq n$.对于A,$a_n - a_m = a_1 + (n - 1)d - [a_1 + (m - 1)d] = (n - m)d$,A正确;对于B,由$a_n = m$,$a_m = n$,得$d = \frac{a_n - a_m}{n - m} = \frac{m - n}{n - m} = -1$,所以$a_{n + m} = a_m + [(n + m) - m]d = n + (-1) · n = 0$,B正确;对于C,由$S_n = na_1 + \frac{n(n - 1)}{2}d$,得$\frac{S_n}{n} = a_1 + \frac{d}{2}n - \frac{d}{2}$,所以$\frac{S_{n + 1}}{n + 1} - \frac{S_n}{n} = \frac{d}{2}$,即$\{\frac{S_n}{n}\}$是公差为$\frac{d}{2}$的等差数列,C错误;对于D,因为$S_n = m$,$S_m = n$,所以$S_n = na_1 + \frac{n(n - 1)}{2}d = m$,$S_m = ma_1 + \frac{m(m - 1)}{2}d = n$,两式相减得$a_1 + \frac{n + m - 1}{2}d = -1$,所以$S_{n + m} = (n + m)a_1 + \frac{(n + m)(n + m - 1)}{2}d = (n + m) · (a_1 + \frac{n + m - 1}{2}d) = -(m + n)$,D正确.
6. [多选题]已知$\{ a_{n}\}$是等差数列,$S_{n}$是其前$n$项和,则下列结论正确的是( )
A.若$a_{1}+a_{2}=5$,$a_{3}+a_{4}=9$,则$a_{7}+a_{8}=18$
B.若$a_{2}+a_{11}=4$,则$S_{12}=24$
C.若$a_{1}<0$,$S_{15}<0$,则$S_{6}<S_{5}$
D.若$\{ a_{n}\}$和$\{ a_{n}a_{n+1}\}$都为递增数列,则$a_{n}>0$
A.若$a_{1}+a_{2}=5$,$a_{3}+a_{4}=9$,则$a_{7}+a_{8}=18$
B.若$a_{2}+a_{11}=4$,则$S_{12}=24$
C.若$a_{1}<0$,$S_{15}<0$,则$S_{6}<S_{5}$
D.若$\{ a_{n}\}$和$\{ a_{n}a_{n+1}\}$都为递增数列,则$a_{n}>0$
答案:
6. BC 对于A,由$a_1 + a_2 = 5$,$a_3 + a_4 = 9$,得$(a_3 + a_4) - (a_1 + a_2) = 4d = 4$,所以$d = 1$.又$a_7 + a_8 = (a_1 + a_2) + 12d = 5 + 12 = 17 \neq 18$,所以A错误.对于B,因为$S_{12} = \frac{12(a_1 + a_{12})}{2} = \frac{12(a_2 + a_{11})}{2} = 24$,所以B正确.对于C,由$S_{15} = \frac{15(a_1 + a_{15})}{2} = 15a_8 < 0$,得$a_8 < 0$.又$a_1 < 0$,得$a_n < 0(n = 1, 2, ·s, 8)$,所以$S_6 - S_5 = a_6 < 0$,所以C正确.对于D,因为$\{a_n\}$为递增数列,所以公差$d > 0$.又$\{a_n a_{n + 1}\}$为递增数列,则$a_{n + 2}a_{n + 1} - a_n a_{n + 1} = a_{n + 1} · 2d > 0$,所以对任意的$n \geq 2$,$a_n > 0$,但$a_1$的正负无法确定,所以D错误.
7. 已知函数$f(x)$满足$f(x)+f(1-x)=2$。若数列$\{ a_{n}\}$满足$a_{n}=f(0)+f(\frac{1}{n})+... +f(\frac{n - 1}{n})+f(1)$,则数列$\{ a_{n}\}$的通项公式为______。
答案:
7. $a_n = n + 1$ 因为$a_n = f(0) + f(\frac{1}{n}) + ·s + f(\frac{n - 1}{n}) + f(1)$,$a_n = f(1) + f(\frac{n - 1}{n}) + ·s + f(\frac{1}{n}) + f(0)$,所以$2a_n = [f(0) + f(1)] + [f(\frac{1}{n}) + f(\frac{n - 1}{n})] + ·s + [f(1) + f(0)] = 2(n + 1)$,故$a_n = n + 1$.
查看更多完整答案,请扫码查看