1. 括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都
不改变
。
答案:
不改变
2. 括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项的符号都要
改变
。
答案:
改变
1. 下列等式正确的是 (
A.$-(5a + 4b) = -5a + 4b$
B.$-(5a - 4b) = 5a + 4b$
C.$-(-5a + 4b) = -5a + 4b$
D.$-(-5a - 4b) = 5a + 4b$
D
)A.$-(5a + 4b) = -5a + 4b$
B.$-(5a - 4b) = 5a + 4b$
C.$-(-5a + 4b) = -5a + 4b$
D.$-(-5a - 4b) = 5a + 4b$
答案:
D
2. (2025·相城区期末)已知a,b,c在数轴上的位置如图所示,则化简$|c - b| - |a - c|$得 (

A.$b - a - 2c$
B.$-b - a$
C.$b - a$
D.$2c - b - a$
C
)A.$b - a - 2c$
B.$-b - a$
C.$b - a$
D.$2c - b - a$
答案:
C
3. 去括号:
(1) $-(a + b) + (c - d) = $
(2) $(a - b) - (c - d) = $
(3) $\frac{2}{3}(a - 7b + 1) = $
(4) $5a^{3}-[2a^{2}-(a + 1)] = $
(1) $-(a + b) + (c - d) = $
$-a-b+c-d$
; (2) $(a - b) - (c - d) = $
$a-b-c+d$
;(3) $\frac{2}{3}(a - 7b + 1) = $
$\frac{2}{3}a-\frac{14}{3}b+\frac{2}{3}$
; (4) $5a^{3}-[2a^{2}-(a + 1)] = $
$5a^{3}-2a^{2}+a+1$
.
答案:
(1)$-a-b+c-d$ (2)$a-b-c+d$ (3)$\frac{2}{3}a-\frac{14}{3}b+\frac{2}{3}$ (4)$5a^{3}-2a^{2}+a+1$
4. (整体思想)(2023·泰州)若$2a - b + 3 = 0$,则$2(2a + b) - 4b$的值为
$-6$
.
答案:
$-6$
5. (教材P92例6变式)化简:
(1) $(a + b) + (a - b)$;
(2) $(x - 3y) - (x - y)$;
(3) $(2x - 5y) - 2(3x - 5y)$;
(4) $2(2 - 7x) - 3(6x + 5)$;
(5) $(2x^{2}-\frac{1}{2}+3x)-4(x - x^{2}+\frac{1}{2})$;
(6) $-10a-(2a + b)+2(a-\frac{2}{5}b)$.
(1) $(a + b) + (a - b)$;
(2) $(x - 3y) - (x - y)$;
(3) $(2x - 5y) - 2(3x - 5y)$;
(4) $2(2 - 7x) - 3(6x + 5)$;
(5) $(2x^{2}-\frac{1}{2}+3x)-4(x - x^{2}+\frac{1}{2})$;
(6) $-10a-(2a + b)+2(a-\frac{2}{5}b)$.
答案:
(1)$2a$ (2)$-2y$ (3)$-4x+5y$ (4)$-32x-11$ (5)$6x^{2}-x-\frac{5}{2}$ (6)$-10a-\frac{9}{5}b$
查看更多完整答案,请扫码查看