1. 有理数加法交换律:$a + b = $
b+a
.
答案:
b+a
2. 有理数加法结合律:$(a + b) + c = $
a+(b+c)
.
答案:
a+(b+c)
3. 如果$a + b = 0$,那么$a$,$b$互为
相反数
.
答案:
相反数
1. $(-12) + 11 + (-8) + 39 = [(-12) + (-8)] + (11 + 39)$运用了(
A.加法交换律
B.加法结合律
C.加法交换律和结合律
D.以上都不对
C
)A.加法交换律
B.加法结合律
C.加法交换律和结合律
D.以上都不对
答案:
C
2. 用加法运算律计算$2\frac{1}{4} + (-1\frac{1}{3}) + (-0.25) + \frac{1}{3}$,最简便的是(
A.$[2\frac{1}{4} + (-1\frac{1}{3})] + [(-0.25) + \frac{1}{3}]$
B.$[2\frac{1}{4} + (-0.25)] + [(-1\frac{1}{3}) + \frac{1}{3}]$
C.$(2\frac{1}{4} + \frac{1}{3}) + [(-1\frac{1}{3}) + (-0.25)]$
D.$[2\frac{1}{4} + (-1\frac{1}{3}) + \frac{1}{3}] + (-0.25)$
B
)A.$[2\frac{1}{4} + (-1\frac{1}{3})] + [(-0.25) + \frac{1}{3}]$
B.$[2\frac{1}{4} + (-0.25)] + [(-1\frac{1}{3}) + \frac{1}{3}]$
C.$(2\frac{1}{4} + \frac{1}{3}) + [(-1\frac{1}{3}) + (-0.25)]$
D.$[2\frac{1}{4} + (-1\frac{1}{3}) + \frac{1}{3}] + (-0.25)$
答案:
B
3. (1)如果$3m + (-n) = 0$,那么$3m$与
(2)绝对值小于$83.1$的所有整数的和为
-n
互为相反数;(2)绝对值小于$83.1$的所有整数的和为
0
.
答案:
(1) -n
(2) 0
(1) -n
(2) 0
4. 用简便方法计算:
(1)$2\frac{2}{3} + (-2\frac{1}{2}) + 5\frac{1}{3} + (-5\frac{1}{2})$;
(2)$(-0.5) + 3\frac{1}{4} + 4.75 + (-7\frac{1}{2})$;
(3)$(-18.63) + (-6.15) + 18.2 + (+6.15) + (+1.63)$;
(4)$(+0.7) + (-0.9) + (-1.8) + 1.3 + (-0.2) + (+0.6)$.
(1)$2\frac{2}{3} + (-2\frac{1}{2}) + 5\frac{1}{3} + (-5\frac{1}{2})$;
(2)$(-0.5) + 3\frac{1}{4} + 4.75 + (-7\frac{1}{2})$;
(3)$(-18.63) + (-6.15) + 18.2 + (+6.15) + (+1.63)$;
(4)$(+0.7) + (-0.9) + (-1.8) + 1.3 + (-0.2) + (+0.6)$.
答案:
(1) 0
(2) 0
(3) 1.2
(4) -0.3
(1) 0
(2) 0
(3) 1.2
(4) -0.3
查看更多完整答案,请扫码查看