2025年暑假大串联安徽人民出版社八年级数学北师大版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年暑假大串联安徽人民出版社八年级数学北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第66页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
1. 如图,A,B,C分别是线段$A_{1}B$,$B_{1}C$,$C_{1}A$的中点,若$\triangle ABC$的面积是1,那么$\triangle A_{1}B_{1}C_{1}$的面积是多少?

答案:
解:连接 $ AB_{1},BC_{1},CA_{1} $.
$\because AB = AA_{1}$,
$\therefore \triangle ABC$ 与 $\triangle AA_{1}C$ 的面积相等;
$\because AC = CC_{1}$,
$\therefore \triangle ABC$ 与 $\triangle BCC_{1}$ 的面积相等;
……
即 $\triangle ABC$ 与 $\triangle AA_{1}C,\triangle BCC_{1},\triangle A_{1}CC_{1},\triangle BB_{1}C_{1},\triangle ABB_{1},\triangle AA_{1}B_{1}$ 的面积相等,都等于 $ 1 $,
$\therefore \triangle A_{1}B_{1}C_{1}$ 的面积为 $ 7 $.
$\because AB = AA_{1}$,
$\therefore \triangle ABC$ 与 $\triangle AA_{1}C$ 的面积相等;
$\because AC = CC_{1}$,
$\therefore \triangle ABC$ 与 $\triangle BCC_{1}$ 的面积相等;
……
即 $\triangle ABC$ 与 $\triangle AA_{1}C,\triangle BCC_{1},\triangle A_{1}CC_{1},\triangle BB_{1}C_{1},\triangle ABB_{1},\triangle AA_{1}B_{1}$ 的面积相等,都等于 $ 1 $,
$\therefore \triangle A_{1}B_{1}C_{1}$ 的面积为 $ 7 $.
2. 如图,M是$\triangle ABC$的边BC的中点,AN平分$\angle BAC$,$BN\perp AN$于点N,延长BN交AC于点D,已知$AB = 10$,$BC = 15$,$MN = 3$。
(1)求证:$BN = DN$;
(2)求$\triangle ABC$的周长。

(1)求证:$BN = DN$;
(2)求$\triangle ABC$的周长。
答案:
(1)证明:$\because AN$ 平分 $\angle BAC$,
$\therefore \angle BAN = \angle DAN$.
$\because BN \perp AN$,
$\therefore \angle ANB = \angle AND = 90^{\circ}$.
又 $\because AN = AN$,
$\therefore \triangle ABN \cong \triangle ADN$,
$\therefore BN = DN$.
(2)解:$\because$ 由
(1)得 $ BN = DN $,且 $ BM = CM,MN = 3 $,
$\therefore CD = 2MN = 6$.
$\because \triangle ABN \cong \triangle ADN,AB = 10$,
$\therefore AD = AB = 10$.
$\therefore \triangle ABC$ 的周长 $ = 10 + 10 + 6 + 15 = 41 $.
(1)证明:$\because AN$ 平分 $\angle BAC$,
$\therefore \angle BAN = \angle DAN$.
$\because BN \perp AN$,
$\therefore \angle ANB = \angle AND = 90^{\circ}$.
又 $\because AN = AN$,
$\therefore \triangle ABN \cong \triangle ADN$,
$\therefore BN = DN$.
(2)解:$\because$ 由
(1)得 $ BN = DN $,且 $ BM = CM,MN = 3 $,
$\therefore CD = 2MN = 6$.
$\because \triangle ABN \cong \triangle ADN,AB = 10$,
$\therefore AD = AB = 10$.
$\therefore \triangle ABC$ 的周长 $ = 10 + 10 + 6 + 15 = 41 $.
3. 如图,在$\triangle ABC$中,$\angle C = 90^{\circ}$,AD平分$\angle CAB$,交CB于点D,过点D作$DE\perp AB$于点E。
(1)求证:$\triangle ACD\cong\triangle AED$;
(2)若$\angle B = 30^{\circ}$,$CD = 1$,求BD的长。

(1)求证:$\triangle ACD\cong\triangle AED$;
(2)若$\angle B = 30^{\circ}$,$CD = 1$,求BD的长。
答案:
(1)证明:$\because AD$ 平分 $\angle CAB$,
$\therefore \angle CAD = \angle EAD$.
$\because DE \perp AB,\angle C = 90^{\circ}$,
$\therefore \angle ACD = \angle AED = 90^{\circ}$.
又 $\because AD = AD$,
$\therefore \triangle ACD \cong \triangle AED(AAS)$.
(2)解:$\because \triangle ACD \cong \triangle AED$,
$\therefore DE = CD = 1$.
$\because \angle B = 30^{\circ},\angle DEB = 90^{\circ}$,
$\therefore BD = 2DE = 2$.
(1)证明:$\because AD$ 平分 $\angle CAB$,
$\therefore \angle CAD = \angle EAD$.
$\because DE \perp AB,\angle C = 90^{\circ}$,
$\therefore \angle ACD = \angle AED = 90^{\circ}$.
又 $\because AD = AD$,
$\therefore \triangle ACD \cong \triangle AED(AAS)$.
(2)解:$\because \triangle ACD \cong \triangle AED$,
$\therefore DE = CD = 1$.
$\because \angle B = 30^{\circ},\angle DEB = 90^{\circ}$,
$\therefore BD = 2DE = 2$.
4. 如图,$\square ABCD$中,过A作$AM\perp BC$于M,交BD于E,过C作$CN\perp AD$于N,交BD于F,连接AF,CE。求证:四边形AECF为平行四边形。

答案:
证明:在 $\square ABCD$ 中,$ AB // CD,AB = CD,\angle ABC = \angle ADC $,
$\therefore \angle ABD = \angle CDB$.
又 $\because AM \perp BC,CN \perp AD$,
$\therefore \angle BAM = \angle DCN$,
$\therefore \triangle ABE \cong \triangle CDF$,
$\therefore AE = CF,\angle AEB = \angle CFD$,
$\therefore \angle AEF = \angle CFE$,
$\therefore AE // CF$,
$\therefore$ 四边形 $ AECF $ 为平行四边形.
$\therefore \angle ABD = \angle CDB$.
又 $\because AM \perp BC,CN \perp AD$,
$\therefore \angle BAM = \angle DCN$,
$\therefore \triangle ABE \cong \triangle CDF$,
$\therefore AE = CF,\angle AEB = \angle CFD$,
$\therefore \angle AEF = \angle CFE$,
$\therefore AE // CF$,
$\therefore$ 四边形 $ AECF $ 为平行四边形.
查看更多完整答案,请扫码查看