7. 如图,$\triangle ABC\cong\triangle DCB$,$\angle DBC = 40^{\circ}$,则$\angle AEB =$

80
$^{\circ}$.
答案:
7.80
8. 如图,$A$,$D$,$E$三点在同一直线上,且$\triangle BAD\cong\triangle ACE$,$\angle BDA = 80^{\circ}$.
(1) 求$\angle E$和$\angle BAC$的度数.
(2) 求证:$BD = CE + DE$.

(1) 求$\angle E$和$\angle BAC$的度数.
(2) 求证:$BD = CE + DE$.
答案:
8.
(1)解:
∵△BAD≌△ACE,∠BDA=80°,
∴∠E=∠BDA=80°,∠ABD=∠CAE,
∴∠BAC=∠BAD+∠CAE=∠BAD+∠ABD=180°-
∠BDA=180°-80°=100°.
(2)证明:
∵△BAD≌△ACE,
∴BD=AE,AD=CE,
∴BD=AE=AD+DE=CE+DE,
即BD=DE+CE.
(1)解:
∵△BAD≌△ACE,∠BDA=80°,
∴∠E=∠BDA=80°,∠ABD=∠CAE,
∴∠BAC=∠BAD+∠CAE=∠BAD+∠ABD=180°-
∠BDA=180°-80°=100°.
(2)证明:
∵△BAD≌△ACE,
∴BD=AE,AD=CE,
∴BD=AE=AD+DE=CE+DE,
即BD=DE+CE.
9. 如图,已知$\triangle ABC\cong\triangle DBE$,点$D$在$AC$上,$BC$与$DE$交于点$P$.
(1) 若$\angle ABE = 160^{\circ}$,$\angle DBC = 30^{\circ}$,求$\angle CBE$的度数.
(2) 若$AD = DC = 3\mathrm{cm}$,$BC = 4.5\mathrm{cm}$,求$\triangle DCP$与$\triangle BPE$的周长之和.

(1) 若$\angle ABE = 160^{\circ}$,$\angle DBC = 30^{\circ}$,求$\angle CBE$的度数.
(2) 若$AD = DC = 3\mathrm{cm}$,$BC = 4.5\mathrm{cm}$,求$\triangle DCP$与$\triangle BPE$的周长之和.
答案:
9.解:
(1)
∵△ABC≌△DBE,
∴∠ABC=∠DBE,
∴∠ABC-∠DBC=∠DBE-∠DBC,
即∠ABD=∠CBE=$\frac{1}{2}$(160°-30°)=65°.
(2)
∵△ABC≌△DBE,
∴BE=BC=4.5cm,DE=AC=6cm,
∴△DCP与△BPE的周长之和
=DC+DP+PC+BP+PE+BE
=(DP+PE)+(BP+PC)+DC+BE
=18cm.
(1)
∵△ABC≌△DBE,
∴∠ABC=∠DBE,
∴∠ABC-∠DBC=∠DBE-∠DBC,
即∠ABD=∠CBE=$\frac{1}{2}$(160°-30°)=65°.
(2)
∵△ABC≌△DBE,
∴BE=BC=4.5cm,DE=AC=6cm,
∴△DCP与△BPE的周长之和
=DC+DP+PC+BP+PE+BE
=(DP+PE)+(BP+PC)+DC+BE
=18cm.
查看更多完整答案,请扫码查看