8. 若$a$,$b$,$c$是三角形的三边长,则化简$\vert a - b - c\vert+\vert a + c - b\vert-\vert c - a - b\vert=$(
A.$3a - b - c$
B.$-a - b + 3c$
C.$a + b + c$
D.$a - 3b + c$
B
)A.$3a - b - c$
B.$-a - b + 3c$
C.$a + b + c$
D.$a - 3b + c$
答案:
8.B
9. 已知在$\triangle ABC$中,$\angle A - \angle B = 20^{\circ}$,$\angle B - \angle C = 35^{\circ}$,试判断$\triangle ABC$的形状。
答案:
9.解:设∠B = x,则∠A = 20°+x,∠C = x-35°.
∵∠A+∠B+∠C = 180°,
∴20°+x+x+x-35° = 180°,
解得x = 65°,即∠B = 65°.
∴∠A = 20°+65° = 85°,
∠C = 65°-35° = 30°,
∴△ABC是锐角三角形.
∵∠A+∠B+∠C = 180°,
∴20°+x+x+x-35° = 180°,
解得x = 65°,即∠B = 65°.
∴∠A = 20°+65° = 85°,
∠C = 65°-35° = 30°,
∴△ABC是锐角三角形.
10. 已知在$\triangle ABC$和$\triangle DEF$中,$\angle A = 40^{\circ}$,$\angle E + \angle F = 100^{\circ}$,将$\triangle DEF$按如图所示摆放,使得$\angle D$的两条边分别经过点$B$和点$C$。
(1) 当$\triangle DEF$按图1方式摆放时,$\angle ABD + \angle ACD =$
(2) 当$\triangle DEF$按图2方式摆放时,请求出$\angle ABD + \angle ACD$的度数,并说明理由。
]

(1) 当$\triangle DEF$按图1方式摆放时,$\angle ABD + \angle ACD =$
240
$^{\circ}$。(2) 当$\triangle DEF$按图2方式摆放时,请求出$\angle ABD + \angle ACD$的度数,并说明理由。
]
答案:
10.解:
(1)240;
(2)∠ABD+∠ACD = 40°.理由:
∵∠A = 40°,∠A+∠ABC+∠ACB = 180°,
∴∠ABC+∠ACB = 140°.
∵∠E+∠F = 100°,∠D+∠E+∠F = 180°,
∴∠D = 80°.
∵∠D+∠DBC+∠DCB = 180°,
∴∠DBC+∠DCB = 100°.
∴∠ABD+∠ACD = (∠ABC+∠ACB)-(∠DBC+∠DCB) = 140°-100° = 40°.
(1)240;
(2)∠ABD+∠ACD = 40°.理由:
∵∠A = 40°,∠A+∠ABC+∠ACB = 180°,
∴∠ABC+∠ACB = 140°.
∵∠E+∠F = 100°,∠D+∠E+∠F = 180°,
∴∠D = 80°.
∵∠D+∠DBC+∠DCB = 180°,
∴∠DBC+∠DCB = 100°.
∴∠ABD+∠ACD = (∠ABC+∠ACB)-(∠DBC+∠DCB) = 140°-100° = 40°.
查看更多完整答案,请扫码查看