7. 有理数$a$,$b$在数轴上的位置如图,则化简$|a| - |a + b| + |b - a|$的结果是(

A.$2b - a$
B.$-a$
C.$2b - 3a$
D.$-3a$
A
)A.$2b - a$
B.$-a$
C.$2b - 3a$
D.$-3a$
答案:
A
8. 一个由小菱形组成的装饰链,断去了一部分,剩下部分如图所示,则断去部分的小菱形的个数可能是(

A.$2 028$
B.$2 027$
C.$2 026$
D.$2 025$
B
)A.$2 028$
B.$2 027$
C.$2 026$
D.$2 025$
答案:
B
9. 比较大小:$-\left|-\dfrac{3}{2}\right|$
<
$-(-1)$(选填“$>$”或“$<$”)。
答案:
<
10. 单项式$-\dfrac{1}{5}x^{2}y$的系数是
$-\frac{1}{5}$
。
答案:
$-\frac{1}{5}$
11. 地球静止轨道离地面的高度约为$35 800$千米。将数据$35 800$用科学记数法表示为
$3.58× 10^{4}$
。
答案:
$3.58× 10^{4}$
12. 若$-\dfrac{1}{2}x^{m + 3}y与2x^{4}y^{n + 3}$是同类项,则$(m + n)^{2 025} = $
-1
。
答案:
-1
13. 规定一种新的运算:$a * b = a^{2}b - a + b + 1$,则$(-3) * 4 = $
44
。
答案:
44
14. 某种水果的售价为$a$元/kg,小明购买了$3$kg 这种水果。扫码支付时,在享受九折优惠的基础上,又使用了一个$0.1$元的红包,则他实际支付了
(2.7a-0.1)
元(用含$a$的代数式表示)。
答案:
(2.7a-0.1)
15. 已知在纸面上有一个数轴(如图),折叠纸面,使表示$-1的点与表示2.5$的点重合。若数轴上$A$,$B两点之间的距离为5$(点$A在点B$的左侧),且$A$,$B$两点经折叠后重合,则点$A$表示的数是

-1.75
。
答案:
-1.75
16. 当$x = 2$时,整式$ax^{3} + bx + 5的值为2 026$,则当$x = -2$时,整式$ax^{3} + bx + 5$的值为
-2016
。
答案:
解析:因为当x=2时,整式$ax^{3}+bx+5$的值为2026,所以$8a+2b+5=2026$,所以$8a+2b=2021$,所以$-8a-2b=-2021$,所以当x=-2时,整式$ax^{3}+bx+5$的值为$(-2)^{3}a+(-2)b+5=-8a-2b+5=-2021+5=-2016$.答案:-2016
查看更多完整答案,请扫码查看