2025年育才课堂探究册七年级数学上册北师大版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年育才课堂探究册七年级数学上册北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年育才课堂探究册七年级数学上册北师大版》

变式 计算:(1)$-5\frac{5}{6}-2\frac{1}{6}+(-2)-(-3)$;(2)$(-0.25)+(-3)-\left|-1\frac{3}{4}\right|$;(3)$\left(+17\frac{3}{4}\right)-(+6.25)-\left(-8\frac{1}{2}\right)-(+0.75)-22\frac{1}{4}$.解:(1)原式= -8-2+3= -10+3= -7;(2)原式= -0.25-3-1.75= -3.25-1.75= -5;(3)原式$=\left(17\frac{3}{4}-0.75\right)+\left(-6.25-22\frac{1}{4}\right)+8\frac{1}{2}$$=17-28\frac{1}{2}+8\frac{1}{2}$$=17-20$$=-3$.
答案:
变式 计算:(1)$-5\frac{5}{6}-2\frac{1}{6}+(-2)-(-3)$;(2)$(-0.25)+(-3)-\left|-1\frac{3}{4}\right|$;(3)$\left(+17\frac{3}{4}\right)-(+6.25)-\left(-8\frac{1}{2}\right)-(+0.75)-22\frac{1}{4}$.解:(1)原式= -8-2+3= -10+3= -7;(2)原式= -0.25-3-1.75= -3.25-1.75= -5;(3)原式$=\left(17\frac{3}{4}-0.75\right)+\left(-6.25-22\frac{1}{4}\right)+8\frac{1}{2}$$=17-28\frac{1}{2}+8\frac{1}{2}$$=17-20$$=-3$.
答案:
变式 计算:(1)$-5\frac{5}{6}-2\frac{1}{6}+(-2)-(-3)$;(2)$(-0.25)+(-3)-\left|-1\frac{3}{4}\right|$;(3)$\left(+17\frac{3}{4}\right)-(+6.25)-\left(-8\frac{1}{2}\right)-(+0.75)-22\frac{1}{4}$.解:(1)原式= -8-2+3= -10+3= -7;(2)原式= -0.25-3-1.75= -3.25-1.75= -5;(3)原式$=\left(17\frac{3}{4}-0.75\right)+\left(-6.25-22\frac{1}{4}\right)+8\frac{1}{2}$$=17-28\frac{1}{2}+8\frac{1}{2}$$=17-20$$=-3$.
答案:
例3 计算:1+(-2)+(-3)+4+5+(-6)+(-7)+8+…+2009+(-2010)+(-2011)+2012+2013+(-2014).解:原式= (1-2)+(-3+4)+(5-6)+(-7+8)+…+(2009-2010)+(-2011+2012)+(2013-2014)= -1+1-1+1…-1+1-1= -1.
答案:
例3 计算:1+(-2)+(-3)+4+5+(-6)+(-7)+8+…+2009+(-2010)+(-2011)+2012+2013+(-2014).解:原式= (1-2)+(-3+4)+(5-6)+(-7+8)+…+(2009-2010)+(-2011+2012)+(2013-2014)= -1+1-1+1…-1+1-1= -1.
答案:
例3 计算:1+(-2)+(-3)+4+5+(-6)+(-7)+8+…+2009+(-2010)+(-2011)+2012+2013+(-2014).解:原式= (1-2)+(-3+4)+(5-6)+(-7+8)+…+(2009-2010)+(-2011+2012)+(2013-2014)= -1+1-1+1…-1+1-1= -1.
答案:
例4 阅读下面的解题过程,并用解题过程中的解题方法解决问题.计算:$-1\frac{5}{6}+\left(-2\frac{2}{3}\right)+9\frac{3}{4}+\left(-3\frac{1}{2}\right)$.解:原式$=[(-1)+\left(-\frac{5}{6}\right)]+[(-2)+\left(-\frac{2}{3}\right)]+(9+\frac{3}{4})+[(-3)+\left(-\frac{1}{2}\right)]$$=[(-1)+(-2)+9+(-3)]+\left[\left(-\frac{5}{6}\right)+\left(-\frac{2}{3}\right)+\frac{3}{4}+\left(-\frac{1}{2}\right)\right]$$=3+\left(-\frac{5}{4}\right)$$=\frac{7}{4}$.以上解题方法叫作拆项法.请你利用拆项法计算:$\left(-2023\frac{5}{6}\right)+\left(-2022\frac{2}{3}\right)+\left(-1\frac{1}{2}\right)+\left(-\frac{5}{6}\right)+4045\frac{3}{4}$.解:原式$=[(-2023)+\left(-\frac{5}{6}\right)]+[(-2022)+\left(-\frac{2}{3}\right)]+[(-1)+\left(-\frac{1}{2}\right)]+4045+\frac{3}{4}+\left(-\frac{5}{6}\right)$$=(-2023-2022-1+4045)+\left(-\frac{5}{6}-\frac{2}{3}-\frac{1}{2}-\frac{5}{6}+\frac{3}{4}\right)$$=-1+\frac{3}{4}-\frac{17}{6}$$=-3\frac{1}{12}$.
答案:
例4 阅读下面的解题过程,并用解题过程中的解题方法解决问题.计算:$-1\frac{5}{6}+\left(-2\frac{2}{3}\right)+9\frac{3}{4}+\left(-3\frac{1}{2}\right)$.解:原式$=[(-1)+\left(-\frac{5}{6}\right)]+[(-2)+\left(-\frac{2}{3}\right)]+(9+\frac{3}{4})+[(-3)+\left(-\frac{1}{2}\right)]$$=[(-1)+(-2)+9+(-3)]+\left[\left(-\frac{5}{6}\right)+\left(-\frac{2}{3}\right)+\frac{3}{4}+\left(-\frac{1}{2}\right)\right]$$=3+\left(-\frac{5}{4}\right)$$=\frac{7}{4}$.以上解题方法叫作拆项法.请你利用拆项法计算:$\left(-2023\frac{5}{6}\right)+\left(-2022\frac{2}{3}\right)+\left(-1\frac{1}{2}\right)+\left(-\frac{5}{6}\right)+4045\frac{3}{4}$.解:原式$=[(-2023)+\left(-\frac{5}{6}\right)]+[(-2022)+\left(-\frac{2}{3}\right)]+[(-1)+\left(-\frac{1}{2}\right)]+4045+\frac{3}{4}+\left(-\frac{5}{6}\right)$$=(-2023-2022-1+4045)+\left(-\frac{5}{6}-\frac{2}{3}-\frac{1}{2}-\frac{5}{6}+\frac{3}{4}\right)$$=-1+\frac{3}{4}-\frac{17}{6}$$=-3\frac{1}{12}$.
答案:
例4 阅读下面的解题过程,并用解题过程中的解题方法解决问题.计算:$-1\frac{5}{6}+\left(-2\frac{2}{3}\right)+9\frac{3}{4}+\left(-3\frac{1}{2}\right)$.解:原式$=[(-1)+\left(-\frac{5}{6}\right)]+[(-2)+\left(-\frac{2}{3}\right)]+(9+\frac{3}{4})+[(-3)+\left(-\frac{1}{2}\right)]$$=[(-1)+(-2)+9+(-3)]+\left[\left(-\frac{5}{6}\right)+\left(-\frac{2}{3}\right)+\frac{3}{4}+\left(-\frac{1}{2}\right)\right]$$=3+\left(-\frac{5}{4}\right)$$=\frac{7}{4}$.以上解题方法叫作拆项法.请你利用拆项法计算:$\left(-2023\frac{5}{6}\right)+\left(-2022\frac{2}{3}\right)+\left(-1\frac{1}{2}\right)+\left(-\frac{5}{6}\right)+4045\frac{3}{4}$.解:原式$=[(-2023)+\left(-\frac{5}{6}\right)]+[(-2022)+\left(-\frac{2}{3}\right)]+[(-1)+\left(-\frac{1}{2}\right)]+4045+\frac{3}{4}+\left(-\frac{5}{6}\right)$$=(-2023-2022-1+4045)+\left(-\frac{5}{6}-\frac{2}{3}-\frac{1}{2}-\frac{5}{6}+\frac{3}{4}\right)$$=-1+\frac{3}{4}-\frac{17}{6}$$=-3\frac{1}{12}$.
答案:
例5 在有些情况下,不需要计算出也能把绝对值符号去掉,如:|5+4|= 5+4,|-5-4|= 5+4,|5-4|= 5-4,|4-5|= 5-4.根据上面的规律,计算:$\left|\frac{1}{2}-1\right|+\left|\frac{1}{3}-\frac{1}{2}\right|+\left|\frac{1}{4}-\frac{1}{3}\right|+\dots +\left|\frac{1}{2022}-\frac{1}{2021}\right|+\left|\frac{1}{2023}-\frac{1}{2022}\right|$.解:原式$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\dots +\frac{1}{2021}-\frac{1}{2022}+\frac{1}{2022}-\frac{1}{2023}$$=1-\frac{1}{2023}$$=\frac{2022}{2023}$.
答案:
例5 在有些情况下,不需要计算出也能把绝对值符号去掉,如:|5+4|= 5+4,|-5-4|= 5+4,|5-4|= 5-4,|4-5|= 5-4.根据上面的规律,计算:$\left|\frac{1}{2}-1\right|+\left|\frac{1}{3}-\frac{1}{2}\right|+\left|\frac{1}{4}-\frac{1}{3}\right|+\dots +\left|\frac{1}{2022}-\frac{1}{2021}\right|+\left|\frac{1}{2023}-\frac{1}{2022}\right|$.解:原式$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\dots +\frac{1}{2021}-\frac{1}{2022}+\frac{1}{2022}-\frac{1}{2023}$$=1-\frac{1}{2023}$$=\frac{2022}{2023}$.
答案:
例5 在有些情况下,不需要计算出也能把绝对值符号去掉,如:|5+4|= 5+4,|-5-4|= 5+4,|5-4|= 5-4,|4-5|= 5-4.根据上面的规律,计算:$\left|\frac{1}{2}-1\right|+\left|\frac{1}{3}-\frac{1}{2}\right|+\left|\frac{1}{4}-\frac{1}{3}\right|+\dots +\left|\frac{1}{2022}-\frac{1}{2021}\right|+\left|\frac{1}{2023}-\frac{1}{2022}\right|$.解:原式$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\dots +\frac{1}{2021}-\frac{1}{2022}+\frac{1}{2022}-\frac{1}{2023}$$=1-\frac{1}{2023}$$=\frac{2022}{2023}$.
答案:
例6 先阅读下列内容,然后解答问题.因为$\frac{1}{1× 2}= 1-\frac{1}{2}$,$\frac{1}{2× 3}= \frac{1}{2}-\frac{1}{3}$,$\frac{1}{3× 4}= \frac{1}{3}-\frac{1}{4}$…$\frac{1}{9× 10}= \frac{1}{9}-\frac{10}{1}$,所以$\frac{1}{1× 2}+\frac{1}{2× 3}+\dots +\frac{1}{9× 10}= 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}\dots +\frac{1}{9}-\frac{1}{10}= \frac{9}{10}$.计算:①$\frac{1}{1× 2}+\frac{1}{2× 3}+\frac{1}{3× 4}+\dots +\frac{1}{2010× 2011}$;②探究并计算:$\frac{1}{2× 4}+\frac{1}{4× 6}+\frac{1}{6× 8}+\dots +\frac{1}{2012× 2014}$.解:①$\frac{1}{1× 2}+\frac{1}{2× 3}+\frac{1}{3× 4}+\dots +\frac{1}{2010× 2011}$$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\dots +\frac{1}{2010}-\frac{1}{2011}$$=1-\frac{1}{2011}= \frac{2010}{2011}$;②$\frac{1}{2× 4}+\frac{1}{4× 6}+\frac{1}{6× 8}+\dots +\frac{1}{2012× 2014}$$=\frac{1}{4}× \left(\frac{1}{1× 2}+\frac{1}{2× 3}+\frac{1}{3× 4}+\dots +\frac{1}{1006× 1007}\right)$$=\frac{1}{4}× \left(1-\frac{1}{1007}\right)$$=\frac{1006}{4× 1007}$$=\frac{503}{2014}$.
答案:
例6 先阅读下列内容,然后解答问题.因为$\frac{1}{1× 2}= 1-\frac{1}{2}$,$\frac{1}{2× 3}= \frac{1}{2}-\frac{1}{3}$,$\frac{1}{3× 4}= \frac{1}{3}-\frac{1}{4}$…$\frac{1}{9× 10}= \frac{1}{9}-\frac{10}{1}$,所以$\frac{1}{1× 2}+\frac{1}{2× 3}+\dots +\frac{1}{9× 10}= 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}\dots +\frac{1}{9}-\frac{1}{10}= \frac{9}{10}$.计算:①$\frac{1}{1× 2}+\frac{1}{2× 3}+\frac{1}{3× 4}+\dots +\frac{1}{2010× 2011}$;②探究并计算:$\frac{1}{2× 4}+\frac{1}{4× 6}+\frac{1}{6× 8}+\dots +\frac{1}{2012× 2014}$.解:①$\frac{1}{1× 2}+\frac{1}{2× 3}+\frac{1}{3× 4}+\dots +\frac{1}{2010× 2011}$$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\dots +\frac{1}{2010}-\frac{1}{2011}$$=1-\frac{1}{2011}= \frac{2010}{2011}$;②$\frac{1}{2× 4}+\frac{1}{4× 6}+\frac{1}{6× 8}+\dots +\frac{1}{2012× 2014}$$=\frac{1}{4}× \left(\frac{1}{1× 2}+\frac{1}{2× 3}+\frac{1}{3× 4}+\dots +\frac{1}{1006× 1007}\right)$$=\frac{1}{4}× \left(1-\frac{1}{1007}\right)$$=\frac{1006}{4× 1007}$$=\frac{503}{2014}$.
答案:
例6 先阅读下列内容,然后解答问题.因为$\frac{1}{1× 2}= 1-\frac{1}{2}$,$\frac{1}{2× 3}= \frac{1}{2}-\frac{1}{3}$,$\frac{1}{3× 4}= \frac{1}{3}-\frac{1}{4}$…$\frac{1}{9× 10}= \frac{1}{9}-\frac{10}{1}$,所以$\frac{1}{1× 2}+\frac{1}{2× 3}+\dots +\frac{1}{9× 10}= 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}\dots +\frac{1}{9}-\frac{1}{10}= \frac{9}{10}$.计算:①$\frac{1}{1× 2}+\frac{1}{2× 3}+\frac{1}{3× 4}+\dots +\frac{1}{2010× 2011}$;②探究并计算:$\frac{1}{2× 4}+\frac{1}{4× 6}+\frac{1}{6× 8}+\dots +\frac{1}{2012× 2014}$.解:①$\frac{1}{1× 2}+\frac{1}{2× 3}+\frac{1}{3× 4}+\dots +\frac{1}{2010× 2011}$$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\dots +\frac{1}{2010}-\frac{1}{2011}$$=1-\frac{1}{2011}= \frac{2010}{2011}$;②$\frac{1}{2× 4}+\frac{1}{4× 6}+\frac{1}{6× 8}+\dots +\frac{1}{2012× 2014}$$=\frac{1}{4}× \left(\frac{1}{1× 2}+\frac{1}{2× 3}+\frac{1}{3× 4}+\dots +\frac{1}{1006× 1007}\right)$$=\frac{1}{4}× \left(1-\frac{1}{1007}\right)$$=\frac{1006}{4× 1007}$$=\frac{503}{2014}$.
答案:

查看更多完整答案,请扫码查看

关闭